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Abstract 
Sensitivity analysis is a study of how changes in the inputs to a model influence the 

results of the model.  Many techniques have recently been proposed for use when the 
model is probabilistic.  This report considers the related problem of sensitivity analysis 
when the model includes uncertain numbers that can involve both aleatory and epistemic 
uncertainty and the method of calculation is Dempster-Shafer evidence theory or 
probability bounds analysis.  Some traditional methods for sensitivity analysis generalize 
directly for use with uncertain numbers, but, in some respects, sensitivity analysis for 
these analyses differs from traditional deterministic or probabilistic sensitivity analyses.  
A case study of a dike reliability assessment illustrates several methods of sensitivity 
analysis, including traditional probabilistic assessment, local derivatives, and a 
“pinching” strategy that hypothetically reduces the epistemic uncertainty or aleatory 
uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the 
outputs.  The prospects for applying the methods to black box models are also 
considered. 
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Executive summary 
Sensitivity analysis is the general term for systematic study of how changes in the 

inputs to a model would influence the results of the model.  Sensitivity analyses are 
conducted for three fundamental reasons: (i) to understand the reliability or robustness of 
the conclusions and inferences drawn from an assessment, (ii) to identify how best to 
control a system or manage its outputs, and (iii) to focus future empirical studies so that 
effort might be expended to improve estimates of inputs that would lead to the most 
improvement in the estimates of the outputs.  Sensitivity analysis is tightly intertwined 
with uncertainty analysis.  Sensitivity analysis has many manifestations in probabilistic 
risk analysis and there are many disparate approaches based on various measures of 
sensitivity, influence and response.  When probabilistic analyses are generalized to 
address both epistemic and aleatory uncertainty, new methods of calculation are needed 
such as Dempster-Shafer evidence theory (DST) and probability bounds analysis (PBA).  
The relationship between sensitivity analysis and these methods is subtle.  The report 
makes the following conclusions: 

1. DST and PBA are themselves a kind of sensitivity analysis.  They can answer a 
wide variety of what-if questions about an analysis with considerable 
comprehensiveness. 

2. Some traditional methods for parametric sensitivity analysis based on using 
derivatives as estimates of local sensitivities generalize straightforwardly for use 
in DST and PBA.  These methods can be useful when the overall uncertainty 
about a variable is small. 

3. Sensitivity analyses can also be applied within a DST or PBA analysis by 
hypothetically reducing epistemic uncertainty, aleatory uncertainty, or both.  This 
approach can be used whatever the magnitude of the uncertainty about the input 
variables, but it requires decisions by the analyst on how the reduction should be 
defined and how the basic and residual uncertainty should be measured. 

The hypothetical reduction of uncertainty may be done in different ways.  In particular, 
the analysis might remove all uncertainty so that a parameter is held at some fixed value.  
Alternatively, the analysis might only pinch away the epistemic portion of the uncertainty 
and leave the parameter to vary according to some fixed probability distribution.  Finally, 
it could exclude the aleatory uncertainty and consider only the consequences of epistemic 
portion of uncertainty about the parameter without any variability.  The reduction of 
uncertainty resulting under these various hypotheses can also be measured in different 
ways.  Although variance is often used as the measure of uncertainty in probabilistic 
analyses, it turns out that, when analyses are concerned with both types of uncertainty, 
variance is not the only, and may not be the best, possible measure of uncertainty.  Other 
possible measures include the range, interquartile distance and related measures based on 
order statistics, and the area between the upper and lower bounds of an uncertain number. 
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1 Introduction 
Sensitivity analysis is a method to assess the sensitivity of a model to changes in its 

input parameters.  If small changes in an input parameter result in relatively large 
changes in a model’s output, the model is said to be sensitive to the parameter.  The 
changes could be actual changes anticipated in the future, or potential changes that might 
occur, or merely hypothetical changes being considered as part of planning.  Sensitivity 
analyses are usually conducted to understand how the conclusions and inferences drawn 
from a calculation or an assessment depend on its inputs, and also to focus future 
empirical studies so that effort might be expended to improve estimates of inputs that 
would lead to the most improvement in the estimates of the outputs.  Many researchers 
find sensitivity measures useful as a further reality check on the plausibility of a model, 
or for addressing theoretical issues such as, for instance, whether the model’s variables 
are related to each other in a reasonable way. 

When applied to fixed models involving deterministic quantities, sensitivity analyses 
are often reported in terms of sensitivity indices that are related in some way to 
mathematical derivatives (tangents) of the response function with respect to an input of 
the function, or perhaps as graphs showing how the response function would vary as the 
value of an input parameter is altered.  The derivative gives a local picture of how small 
changes in the input would be translated into consequences on the response.  The graph 
can reveal a global picture of the effects of input changes of any magnitude.  When the 
input parameters or the function itself are generalized from the deterministic case to 
probability distributions and stochastic functions, the questions of sensitivity analysis 
become entwined with related questions about how the actual variability in the input is 
propagated through the function and expressed as variation in its output.  In deterministic 
analyses, the changes under discussion could be purely hypothetical or the result of 
engineering design or human intervention.  But, in the probabilistic setting, the variation 
of the inputs might commonly be a consequence of natural processes, perhaps beyond 
human control.  

Because of the obvious and fundamental importance of sensitivity analyses for the 
interpretation of uncertain calculations, there has been a confluence of attention to this 
issue from disparate analytical disciplines.  Sensitivity analysis consequently has many 
manifestations in probabilistic analyses and there are many disparate approaches based 
on various measures of influence and response (Helton et al. 2006b; Cacuci 2003; Frey 
and Patil 2002; Frey 2002; Saltelli et al. 2000; Hamby 1994; Helton 1993; Iman and 
Helton 1988; and references therein).  L’Ecuyer (1991) and Fu (1994) provided general 
reviews on the estimation of gradients in simulation studies.  Cacuci et al. (2003; 2005) 
have promoted this approach, especially in nuclear engineering.  Morgan and Henrion 
(1990) reviewed techniques of sensitivity analysis that have been applied to risk analysis 
models.  One can crudely classify the techniques for sensitivity analysis into three 
categories: brute-force methods, regression methods, and calculus methods.  By ‘brute-
force’, we refer to an approach in which some quantity is repeatedly estimated for various 
values of parameters for which sensitivity estimates are sought.  Both systematic and 
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random sampling can be applied to single-variable or mixed-variable designs.  This 
approach works if the evaluation cost is moderate, but it often isn’t for the probabilistic 
models encountered in complex analyses.  The regression approaches include response 
surface methods (Myers 1971; Morton 1983; Downing et al. 1985; Kleijnen 1992; Myers 
1999; Myers et al. 2004), the Fourier amplitude sensitivity test (Cukier et al. 1978), and 
logistic regression (Hosmer and Lemeshow 1989).  The last of these can be used to 
directly estimate sensitivities of probabilities (McCarthy et al. 1995).  Finally, the 
calculus approaches include manually engineered symbolic differentiation (Iman and 
Helton 1988), computer calculus (Oblow 1983a; 1983b), and automatic differentiation 
(Fischer 1993; Korivi et al. 1994; Griewank 1989; 2000).  Only the first is immediately 
applicable to probabilistic models, but it can involve many person-months of effort (Iman 
and Helton 1988).  General approaches for sensitivity analysis of discrete event dynamic 
systems are studied by Ho and Cao (1991), Glasserman (1991), Rubinstein and Shapiro 
(1993), and Pflug (1996), inter alia. 

Uryasev (1994; 1995) described a general technique to compute sensitivities to 
infinitesimal changes in parameters for probabilities that are estimated with Monte Carlo 
methods.  The approach is useful for a special class of functions—sums of expectations 
of indicator functions—of which probabilities are a special case (Uryasev 1997).  The 
approach theoretically applies to arbitrary model parameters, notwithstanding 
mathematical complexity of the model, nonlinearities, or correlation structure among the 
random variables.  Remarkably, the calculation requires no further iterations of the Monte 
Carlo simulation beyond those needed to estimate the probability itself, and can often be 
accomplished with negligible additional computation.  Indeed, the sensitivities of any 
number of parameters can be computed simultaneously, representing a vast savings of 
computational effort compared with the traditional approach to Monte Carlo sensitivity 
analysis. 

During the generalization from the deterministic to the probabilistic setting, 
sensitivity analysis seems to have come to mean different things to different analysts.  
For instance, many hold that sensitivity analysis is a study of how the variation in the 
output of a model can be apportioned to different sources of variation in the inputs (e.g., 
Saltelli 2003, Li et al. 2001; Rabitz and Alis 1999; Saltelli et al. 1999; Sobol’ 1993; inter 
alia).  This approach decomposes variance in the output in terms of the contributions 
from the several inputs.  This is surely different from the earlier interpretation of 
sensitivity analysis as applied to deterministic models, in which there is no variation to 
apportion.  The variance-decomposition approach is not the only possible extension of 
sensitivity analysis for the probabilistic setting.   

Leamer (1990) defined (global) sensitivity analysis as a systematic study in which “a 
neighborhood of alternative assumptions is selected and the corresponding interval of 
inferences is identified”.  Many analysts consider such a study to be properly categorized 
under uncertainty analysis rather than as any part of sensitivity analysis, but Leamer is 
hardly alone in his usage.  The phrase “Bayesian sensitivity analysis” is used by 
Bayesians to describe an analysis that, in fact, resolves the forward problem of 
uncertainty analysis and answers the question of how reliable inferences about model 
outputs are given the uncertainty about the inputs (Berger 1985; Lavine 1991).  Andres 
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(2004) suggested that sensitivity analysis reveals what is causing the uncertainty of model 
outputs.  Thus, sensitivity analysis seems very close to uncertainty analysis (which 
Andres distinguished as revealing how uncertain the model results are).  Saltelli (2000) 
went so far as to characterize sensitivity analysis as the study of relationships between 
information flowing into and out from a model.  Such an expansive characterization 
excludes hardly any aspect of quantitative modeling. 

The literature on sensitivity analysis is huge and scattered throughout all the 
quantitative disciplines.  Many of the methods in use are home grown within specialties 
and are not applications of a broader, external theory with a secure mathematical 
interpretation.  The subject matter is experiencing a spurt of growth, or perhaps a 
metastasis, which is both exciting and daunting.  There seems to be an explosion of 
different indices, measures and strategies for sensitivity analysis.  Even the purposes to 
which sensitivity analysis is put are growing in number.  The Wikipedia entry for 
sensitivity analysis lists six purposes, including determining not just which factors 
contribute most to the output variability and the region in the space of inputs where 
model variation is largest, but also the quality of the model definition and resemblance of 
the model with the process under study (http://en.wikipedia/wiki/Sensitivity_analysis).  
Several recent reviews of sensitivity analyses, notably including Saltelli et al. (2000), 
Saltelli et al. (2004), and Frey et al. (2003; 2004; Frey 2002) are virtually encyclopedia, 
both in length and number of subtopics.  Even if the discussion is limited to the methods 
used for probabilistic calculations, there is a huge variety in the strategies and ideas.  This 
report is not intended to be a comprehensive review of these disparate approaches.  It 
offers, instead, a perhaps contrarian perspective on some of the issues that arise in 
sensitivity analyses under general uncertainty.  In particular, it points out some of the 
wrinkles that arise when we apply sensitivity analysis to calculation problems with 
uncertain numbers which involve both epistemic and aleatory uncertainties. 

The rest of this introduction section very briefly reviews the Dempster-Shafer 
evidence theory (DST) and probability bounds analysis (PBA).  Section 2 argues that 
DST and PBA are themselves sensitivity analyses with considerable comprehensiveness 
and practical utility.  Section 3 considers the use of standard methods based on 
derivatives for parametric sensitivity analysis in assessments involving uncertain 
numbers.  Section 4 explores how a sensitivity analysis can be constructed within a DST 
or PBA assessment by hypothetically reducing uncertainty.  Section 5 applies the ideas of 
the previous sections to a dike reliability assessment problem.  Section 6 discusses the 
notion that variance is the only or best measure of uncertainty in non-deterministic 
sensitivity analyses.  Section 7 describes the application of the methods to black-box 
models and section 8 draws some conclusions and points out some possible directions for 
future research. 

1.1 New methods for uncertainty analysis 
This section gives a synopsis of Dempster-Shafer theory (DST) and probability 

bounds analysis (PBA) and outlines the relationship between these new methods and 
interval analysis and probabilistic uncertainty analysis from which they are jointly 
derived.  This synopsis is minimally sufficient to understand the rest of the report; see the 
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references below for a more discursive and thorough introduction to the use of these new 
methods in risk and uncertainty assessments. 

There are two fundamentally different ways in which uncertainty about inputs is 
propagated through a mathematical model in order to estimate the reliability of the 
calculations or inferences derived from the model.  One natural way is to bound the 
neighborhood of possible input values with interval ranges.  Another natural way is to 
ascribe a probability distribution to the elements in this neighborhood of possible input 
values.  In the context of a deterministic calculation, when the model involves uncertainty 
about the real-valued quantities used in the calculation, uncertainty analysis can be 
conducted via interval analysis (Young 1931; Dwyer 1951; Moore 1966; Alefield and 
Herzberger 1983; Neumaier 1990).  Probability theory, implemented perhaps by Monte 
Carlo simulation, can also be used as an uncertainty analysis of a deterministic 
calculation because it yields a distribution describing the probability of alternative 
possible values about a point estimate (Iman and Helton 1988; Morgan and Henrion 
1990; Helton and Davis 2000b; 2003).  In the figure below these two possible paths are 
shown as right and left downward arrows respectively.   

 

Real numbers

Probability 
distributions

Interval
ranges

Second-order proba-
bility distributions

Dempster-Shafer 
structures & p-boxes

Real numbers

Probability 
distributions

Interval
ranges

Second-order proba-
bility distributions

Dempster-Shafer 
structures & p-boxes  
 

Figure 1.  Relationships among kinds of uncertain numbers. 
 

Of course, the calculations on which it might be desirable to conduct uncertainty 
analyses are not all deterministic.  In fact, many of them are already probabilistic, as is 
the case in most modern risk analyses and safety assessments.  One could construct a 
probabilistic uncertainty analysis of a probabilistic calculation.  The resulting analysis 
would be a second-order probabilistic assessment (Hoffman and Hammonds 1994; Cullen 
and Frey 1999).  However, such studies can be difficult to conduct because of the large 
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number of calculations that are required.  It is also sometimes difficult to visualize the 
results in a way that is easily comprehensible.  Alternatively, one could apply bounding 
arguments to the probabilistic calculation and arrive at interval versions of probability 
distributions.  We call such calculations “probability bounds analysis” (PBA) (Ferson 
1994; 2002; Ferson et al. 2003).  This approach represents the uncertainty about a 
probability distribution by the set of cumulative distribution functions lying entirely 
within a pair of bounding distribution functions called a “probability box” or a “p-box”.  
Mathematically, a p-box is the pair ], FF[ , where F , F : ℜ→[0,1], )(xF  ≤ )(yF  and  
F(x) ≤  F(y) whenever x < y, and )(xF  ≥  F(x) for all x.  A p-box can be identified with 
the set of distribution functions F(x) such that )()()( xFxFxF ≤≤  for all x values.  PBA 
is an uncertainty analysis of a probabilistic calculation because it defines neighborhoods 
of probability distributions (i.e., the p-boxes) that represent the uncertainty about 
imperfectly known input distributions and projects this uncertainty through the model to 
identify a neighborhood of answers (also characterized by a p-box) in a way that 
guarantees the resulting bounds will entirely enclose the cumulative distribution function 
of the output.  A probability distribution is to a p-box the way a real scalar number is to 
an interval.  The bounding distributions of the p-box enclose all possible distributions in 
the same way that the endpoints of the interval circumscribe the possible real values. 

Dempster-Shafer evidence theory (Oberkampf et al. 2005; Klir and Yuan 1995; 
Shafer 1976) has been widely studied in computer science and artificial intelligence, 
although it has never achieved wide acceptance among probabilists and traditional 
statisticians.  In a discrete probability distribution on the real line, a nonzero probability 
mass is associated with each of the possible points of the distribution.  All other values 
have a probability mass of zero and the probabilities for all the points in the discrete 
distribution add up to one.  A Dempster-Shafer structure on the real line is similar to a 
discrete distribution except that the locations at which the probability mass resides are 
sets of real values, rather than precise points.  These sets associated with nonzero mass 
are called focal elements, but unlike for discrete probability distributions, the focal 
elements can overlap one another.  The correspondence between the probability masses 
and their associated focal elements is called the basic probability assignment.  In this 
report, we focus on Dempster-Shafer structures whose focal elements are closed 
intervals.  This restriction allows us to define a Dempster-Shafer structure on the real line 
as a collection of pairs each consisting of an interval and a mass {([x1, y1], m1), ([x2, y2], 
m2), …, ([xn, yn], mn)}, where xi ≤ yi for all i, Σmi = 1, and yi ≠ yj whenever xi = xj. 

Yager (1986) considered bounds on the distribution function of a random real-valued 
quantity characterized by a finite Dempster-Shafer structure.  For a finite Dempster-
Shafer structure with basic probability assignment m and n focal elements [xi, yi], 
i=1,…,n, with associated masses pi, the upper bound for its distribution function is  

∑
≤

=
zx

i
i

mz)CPF( . 

The associated lower bound on the distribution function is 
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≤

=
zy

i
i

mz)CBF( . 

Thus, the cumulative plausibility function is the sum of all masses associated with focal 
elements that overlap with or merely touch any value less than some value z, and the 
cumulative belief function is the sum of all masses associated with focal elements that are 
less than the value z.  These functions bound a cumulative distribution function when 
there is insufficient information to specify it fully, and together they generalize the notion 
of a cumulative distribution function. 

Yager (1986) also defined arithmetic operations between Dempster-Shafer structures 
that generalize the notion of convolution between distribution functions under the 
assumption of independence.  The convolution is essentially a Cartesian product of the 
focal elements of the two operands.  Given two Dempster-Shafer structures {([x1, y1], 
m1), ([x2, y2], m2), …, ([xn, yn], mn)} and {([u1, v1], p1), ([u2, v2], p2), …, ([uk, vk], pk)}, the 
Cartesian product is the nk-element list {(f([x1,y1], [u1,v1]), m1p1), (f([x1,y1], [u2,v2]), 
m1p2), …, (f([x1,y1], [uk,vk]), m1pk), …, (f([x2,y2], [u1,v1]), m2p1), …, (f([xn,yn], [uk,vk]), 
mnpk)}, where f is the function that combines the two uncertain numbers now applied to 
their constituent focal elements.  The masses are multiplied together under the 
independence assumption.  Because , this list is also a Dempster-

Shafer structure, assuming any intervals in the product that happen to be identical 
coalesce into a single focal element and the associated masses are added.  This structure 
is the uncertain number characterizing the generalized convolution between the two 
Dempster-Shafer structures. 

1
1 1

=∑ ∑= =

k

j

n

i ji pm

The algorithm for convolving p-boxes under independence (Williamson and Downs 
1990; Berleant 1993; 1996) is essentially identical to Yager’s Cartesian product.  The 
input p-boxes are discretized into Dempster-Shafer structures, the Cartesian product is 
computed, and the output p-box is reconstituted from the resulting Dempster-Shafer 
structure.  Ferson et al. (2004) reviewed how to compute convolutions in both PBA and 
DST under other assumptions about dependence, and without any assumption about the 
dependence between the uncertain numbers. 

PBA and DST are related to other forms of uncertainty analysis.  They are both 
marriages of probability theory and interval analysis.  As depicted in Figure 1, Dempster-
Shafer structures and p-boxes can arise either by bounding probability distributions (the 
left path down) or by forming probability distributions of intervals (the right path).  Yet 
these analyses are not simply an interval analysis with probability distributions.  They are 
instead integrations of the two approaches that generalize and are faithful to both 
traditions.  For instance, when PBA or DST is provided the same information as is used 
in a traditional probabilistic analysis (i.e., precise information about input distributions 
and their interdependencies), it will yield the same answers as the traditional analysis 
such as might be obtained by Monte Carlo simulation.  When provided only range 
information about the inputs, they will yield the same answers as an interval analysis.  

DST and PBA permit a comprehensive uncertainty analysis that is an alternative to 
second-order or nested Monte Carlo methods.  PBA is very similar in spirit to Bayesian 
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sensitivity analysis (Berger 1985; Lavine 1991; which is also known as robust Bayes), 
although the former exclusively concerns arithmetic and convolutions, and the latter often 
addresses the issues of updating and aggregation.  Unlike Bayesian sensitivity analysis, 
DST and PBA are always easy to deploy because they do not depend on the use of 
conjugate pairs to make calculations simple.  Like Bayesian methods, however, DST and 
PBA may involve serious computational challenges, especially in large analyses.  
Rigorous bounds can be easy to compute, but getting those bounds optimally tight given 
available information can sometimes be difficult.  

PBA and DST are practical approaches to computing with imprecise probabilities 
(Walley 1991).  As in a Bayesian sensitivity analysis, imprecise probabilities are 
represented by a class of distribution functions.  PBA is simpler than the general theory 
of imprecise probabilities because it defines the class solely by reference to two bounding 
distributions.  It therefore cannot fully represent a situation in which there are 
intermediate distributions lying within the bounds that are excluded from the class.  This 
means that p-boxes will often contain distributions that, if isolated and presented to an 
expert, would be rejected as quite far-fetched.  However, in contexts of risk and safety 
assessments, this may not be a significant drawback if the analyst is principally 
concerned with the tail risks governing the probability of extreme events and not so much 
with the shapes of the distributions being enveloped.  DST is generally more flexible than 
PBA in representing situations in which there are distributions that are unreasonable that 
are intermediate between plausible distributions, although much of this flexibility is lost 
if one restricts focal elements to be intervals. 

Because DST and PBA marry probability theory and interval analysis, they treat 
aleatory uncertainty (variability) and epistemic uncertainty (incertitude) separately and 
propagate them differently so that each maintains its own character.  In particular, 
aleatory uncertainty is propagated according to the rules of probability theory because it 
represents randomness, while epistemic uncertainty, on the other hand, is propagated 
according to the rules of interval analysis because it represents ignorance.  The distinction 
between these two forms of uncertainty is considered very important in practical risk 
assessments (Helton 1994; Hoffman and Hammonds 1994; Paté-Cornell 1996; Helton 
1997).  PBA and DST are useful because they can account for the distinction when 
analysts think it is important, but the methods do not require the distinction in order to 
work.  The two forms of uncertainty are like ice and snow in that they often seem to be 
very different, but, when studied closely, they can sometimes become harder and harder 
to distinguish from each other.  For example, if an interval is combined in some 
arithmetic operation with a probability distribution, the epistemic uncertainty captured by 
the interval and the aleatory uncertainty captured by the probability distribution are 
folded together into the resulting p-box which, it can be argued, contains both epistemic 
and aleatory uncertainty in a way that can no longer be completely teased apart.  An 
advantage of PBA and DST, and imprecise probability methods generally (Walley 1991), 
is that they can be developed in behavioral terms that do not depend on maintaining a 
strict distinction between the two forms of uncertainty which can be problematic.   

PBA can be useful whenever the uncertainty about the marginal distributions can be 
characterized by interval bounds about their cumulative distribution functions.  These 
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bounds can be specified using empirical information available about each distribution.  
For instance, if the parameters of a normal distribution can be given within interval 
ranges, best-possible bounds on the distribution are easy to construct.  If the shape of the 
underlying distribution is not known, but some statistics such as the mean, mode, 
variance, etc. can be specified (or given as intervals), rigorous bounds can generally be 
constructed that are guaranteed to enclose the true distribution subject to the given 
constraints.  Often these bounds will be optimally narrow given the stated information.  
In this case, the resulting p-boxes are distribution-free in the sense that they make no 
assumptions whatever about the distribution family (whether it is normal, lognormal, 
Weibull, etc.).  Such bounds on distributions can then be combined according to the 
calculations in the assessment in arithmetic convolutions (addition, multiplication, 
minimum, etc.), magnitude comparisons (greater than, less than, inclusion), logical 
operations (conjunction, disjunction, etc.), and other mathematical transformations 
(logarithm, exponentiation, roots, etc.).  The approach also allows the propagation of 
information or uncertainty about the dependencies among variables in a model that arise 
because of functional or statistical relationships among the variables (Ferson et al. 2004). 

Although it is straightforward to ensure that bounds remain rigorous (sure to contain 
the true distributions) in sequential calculations, the ‘best possible’ nature of the bounds 
may be lost in some complicated calculations.  Maintaining the optimality of the bounds 
is, in general, a computationally challenging task that can require other methods (Walley 
1991).  There can also be computational challenges in the application of DST and PBA to 
project uncertainty through black-box models (whose internal details are unknown and 
which can only be understood through sampling) and any model complicated by repeated 
uncertain variables (Manes 1982).  

There have been several applications of the new methods to a wide variety of 
problems in risk analysis and uncertainty projection, including engineering applications 
(Oberkampf and Helton 2005), reliability studies for dikeworks (Hall and Lawry 2001), 
competing failure calculations for strong/weak link switches (Helton et al. 2004a; 2005b; 
2006a); automotive design (Rekuc et al. 2006), aircraft reliability (Tonon et al. 1999); 
global warming (Kriegler and Held 2005), geological engineering (Tonon et al. 2000a,b), 
slope stability and landslide analysis (Rubio et al. 2004), human health risk assessments 
(MacDonald et al. 2002; EA 2002-2005), and endangered species viability analyses 
(Ferson and Burgman 1995). 

2 The new methods are sensitivity analyses 
Dempster-Shafer theory (DST) and probability bounds analysis (PBA) can be used to 

characterize the neighborhood of possible results that would be obtained from plausible 
alternative inputs in probabilistic calculations.  This short section argues that, under a 
broad definition of sensitivity analysis, the new mathematical methods of DST and PBA 
used to calculate convolutions among uncertain numbers can be sensitivity analyses in 
their own right, even though they do not produce sensitivity rankings or coefficients.  
This section reviews how the new methods can be used to assess the quality of 
probabilistic models such as those developed in Monte Carlo simulations for risk 
analyses. 
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Sensitivity analysis is sometimes defined as a systematic study of how a model’s 
output depends on its input.  This definition is the sense implied when an analyst 
undertakes a “what-if” sensitivity study.  Monte Carlo simulations and Bayesian analyses 
can be viewed as a kind of sensitivity analysis themselves (Helton and Davis 2002; 
Morgan and Henrion 1990; Iman and Helton 1985) in that they yield a distribution 
describing the variability about a deterministic point estimate.  This section suggests that, 
likewise, DST and PBA are also kinds of sensitivity analyses when they are applied to 
deterministic calculations.  In this argument, we are using the phrase “sensitivity 
analysis” as it has been used by several authors (e.g., “probabilistic sensitivity analysis” 
used by O’Hagan 2004; “global sensitivity analysis” used by Leamer 1990; “Bayesian 
sensitivity analysis” used by Berger 1985) to denote what-if studies that assess how a 
model’s output depends on uncertainty about its inputs (rather than to quantify the 
importance of uncertainty sources on a model’s output). 

Many Monte Carlo simulations employ what-if sensitivity studies to explore the 
possible impact on the assessment results of varying the inputs. For instance, the effect of 
the truncating a infinite-tailed distribution at some finite upper value might be explored 
by re-running the model with various truncation settings, and observing the effect on the 
output statistic or distribution. The effect of particular parameter and probability 
distribution choices, and assumptions regarding dependencies between variables can also 
be examined in this way. Model uncertainty can be probed by running simulations using 
different models. However, such studies are often very difficult to conduct because of the 
large number of calculations that are required. While informative, this approach is rarely 
comprehensive because, when there are multiple uncertainties at issue (as there usually 
are), the shear factorial problem of computing all of the possible combinations becomes 
prohibitive. Usually, in practice, only a relatively tiny number of such analyses can be 
performed.   

PBA and DST can be used to automate such what-if sensitivity studies and vastly 
increase their comprehensiveness (Ferson, 1994; 1996; 2001).  They can produce 
rigorous bounds around the risk distribution from an assessment that enclose all the 
possible distributions that could actually arise given what is known and what is not 
known about the model and its inputs. For this reason, they can be used as a 
complementary quality assurance check on Monte Carlo simulation (Ferson, 1995; 1997).  
Because both methods are based on the idea of bounding rather than approximation, they 
provide an estimate of their own reliability (Berleant 1993; 1996; cf. Adams and Kulisch 
1993).  So long as the analyst can encode every step of a model calculation in terms of a 
sequence of transformations of and binary convolutions between the uncertain inputs, 
PBA and DST can comprehensively account for possible deviations in assessment results 
arising from uncertainty about 

• distribution parameters, 
• distribution shape or family, 
• intervariable dependence, and even 
• model structure. 

Moreover, they can handle all of these kinds of uncertainties in single calculations that 
give a simple and rigorous characterization of how different the result could be given all 
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of the professed uncertainty.  The requisite computations used in PBA and DST are 
actually quite simple and have been implemented in straightforward algorithms (Yager 
1986; Williamson and Downs 1990; Berleant 1993; 1996; Ferson 2002; Ferson and 
Hajagos 2004).  For a large class of problems of moderate size commonly encountered in 
risk analysis, the computations for DST and PBA can be faster than a numerically 
intensive sensitivity analysis with traditional methods (Iman et al. 1980; 1981a,b;; Iman 
and Conover 1982; Iman and Helton 1988; Morgan and Henrion 1990; Saltelli et al. 
2000; Helton and Davis 2000b). 

The advantages outlined above of the new methods are limited to models involving 
explicitly known calculations.  PBA and DST cannot be rigorously applied to black box 
models, at least with algorithms currently available.  Various sampling schemes have 
been proposed to extend DST and PBA to black boxes (e.g., Helton et al. 2004a,b; 2006c; 
Bruns et al. 2006), but, because they are necessarily approximation methods, they 
abandon the guarantee that the results will enclose the true distributions.  This means that 
the sampling-based methods do not provide “automatic result verification” (sensu Adams 
and Kulisch 1993), although numerical simulations suggest that overall error rates can be 
made reasonably small if the black box permits many samples to be computed. 

Furthermore, although it is often easy to apply the new methods to explicitly known 
models in a way that produces results that rigorously bound the possible output 
distributions (given the inputs), it can often be difficult to make the results best possible 
bounds whenever uncertain variables appear multiple times in a calculation as often 
occurs in complex models involving dependencies among subcomponents.  In general, 
computing best possible bounds is computationally intensive, and optimality of the 
bounds becomes harder and harder to maintain as the size of the problem and the 
interconnectedness of its elements increase.  In practical assessments, however, 
optimality may not be essential.  For instance, if an assessment can show that the risks are 
surely below some threshold of concern, because the upper distributional bound of risk is 
below it, then no further study is necessary.  Likewise, if the result indicates that the risks 
are surely intolerably high, because the lower distributional bound on risk is above the 
threshold, then the implied decision is also clear.  In practice we find analyses producing 
results with clear implications for decisions and management to be surprisingly common, 
even in cases with large input uncertainties that might have been expected to cloud the 
results.  This frees available analytical resources to be concentrated where they are 
needed most: on problems where the attendant uncertainty makes the decision unclear. 

3 Sensitivity analyses using uncertain numbers 
This section shows how some of the standard methods of differential calculus for 

evaluation of parametric sensitivity can be straightforwardly extended to work with 
uncertain numbers.   

Several of the standard methods of sensitivity analysis employed for deterministic 
problems can also be used in the context of a probabilistic uncertainty assessment (Frey 
et al. 2003 Frey et al. 2004; EPA 2001, Section A).  Although some of these methods do 
not have apparent analogs in DST or PBA (e.g., correlation analysis), many can be 
immediately generalized to work with Dempster-Shafer structures and p-boxes.  For 
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instance, one of the most basic ways to evaluate sensitivity of an input variable is by 
computing the derivative of the output function with respect to it.  For example, 
from the expression 
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(which is similar in form to many of the simplest risk expressions encountered), the 
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If the nominal values for these variables are the point estimates a = 3, b = 4, c = 5, d 
= 8, e = 10, and f = 2, one would estimate the sensitivity of x to changes in a to be 
∂x/∂a = (4×5)/2 = 10. Using the respective formulas for all the variables and the same 
point values, one would compute the following sensitivities: 
 
 Variable  Sensitivity 
 a  10 
 b  7.5 
 c  6 
 d  5 
 e  4 
 f  −35 
 
These partial derivatives are called sensitivity coefficients because they reflect how small 
changes in an input variable would precipitate changes in the output.  The numerical 
results suggest that the quantity x is most sensitive to changes in the variable f, 
followed by variable a and then variable b. When the parameters have units, it is often 
desirable to express the sensitivities in a way that is insensitive to the units so that, for 
instance, changing from kilograms to grams doesn’t increase sensitivity 1000-fold.  It 
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might be reasonable to use the normalization (∂x/∂z)(z/x) where z is one of the six 
input parameters.  There is one important caveat about using partial derivatives as a 
measure of sensitivity: the results are local in nature. They represent the slope of how x 
changes in response to infinitesimal changes in an input parameter. If the relevant 
range for a parameter is broad, the sensitivity computed this way may begin to lose its 
meaning.   

These calculations can be extended directly to the case in which the inputs are 
uncertain numbers. DST or PBA can be applied directly to the formulas for the partial 
derivatives to obtain Dempster-Shafer structures or p-boxes estimating the sensitivities. 
Suppose that the nominal values for the variables are given as 
 

a = [2.5, 3.5], 
b = normal(mean=4,stdev=0.02), 
c = p-box(min=4.3, max=5.2, mean=5), 
d = 8, 
e = p-box(mean=10, variance=0.001), and 
f = uniform(min=1.9, max=2.2),  

 
which include two precise probability distributions, two distribution-free p-boxes, one 
interval and one point value.  These uncertain numbers are depicted in Figure 2.  (The 
quantity d is a degenerate uncertain number because it lacks both epistemic and aleatory 
uncertainty.) 
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Figure 2.  Six uncertain inputs. 
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If these inputs are propagated through the six formulas for partial derivatives of the 
input variables, one obtains an uncertain number for each variable, representing an 
estimate of the sensitivity of x to changes in that variable. The sensitivities were 
computed semi-analytically, without any Monte Carlo sampling, using the RAMAS Risk 
Calc software (Ferson 2002) and specially prepared scripts for the R environment (R 
Development Core Team 2004).  The results are displayed in Figure 3.  Because these 
estimates contain both epistemic and aleatory uncertainty, they cannot be fully 
characterized by scalar numbers.  Even their summary statistics such as the mean and 
variance are usually uncertain.  These statistics are intervals rather than scalar values 
because the sensitivity estimates are general uncertain numbers, except for ∂x/∂e which is 
a probability distribution (because it is a function of only d and f).  The ranges, means, 
medians and variances for the uncertain numbers depicted in Figure 3 are given in the 
table below with two significant digits and outward-directed rounding. 

Sensitivities 
Coefficient Range  Mean  Median  Variance 
 ∂x/∂a  [ 7.7, 12]  [ 9.7, 9.8]   [ 9.1, 11]  [ 0.16, 0.72] 
 ∂x/∂b [ 4.8, 9.6]  [ 6.1, 8.6]   [ 5.7, 8.9]  [ 0.064, 2.1] 
 ∂x/∂c [ 4.4, 7.5]  [ 4.8, 6.9]   [ 4.8, 6.9]  [ 0.042, 1.1] 
 ∂x/∂d [ 4.3, 5.5]  [ 4.8, 4. 9]  [ 4.8, 5.0]   [ 0.041, 
0.045] 
 ∂x/∂e [ 3.6, 4.3]  [ 3.9, 3.9]   [ 3.8, 4.0]   [ 0.026, 
0.029] 
 ∂x/∂f [−43, −25]   [−36, −31]   [−36, −30]   [ 6.7, 17] 
 

These results also reveal the relative importance of f compared to the other 
variables. Note, however, that it will no longer generally be possible to strictly rank the 
sensitivities. Because they can overlap one another, it is not possible to define an 
ordering* for uncertain numbers.  For instance, in the point sensitivity analysis, the 
quantity seemed to be more sensitive to c than to d.  When epistemic and aleatory 
uncertainty are taken into account, this difference is not so clear because the sensitivities 
overlap.   

 

                                                 
*An ordering could, however, be defined with reference to some scalar characteristic of the uncertain 
numbers such as the midpoint, upper bound on the 95th percentile, largest possible value, etc. 
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Figure 3.  Sensitivities of the function to the six uncertain inputs. 

 

Figure 4 offers an alternative depiction of the uncertainty about how the function x 
changes as each of the input variables varies.  In each of the six graphs the value of x is 
plotted as a function of an input variable varying over its possible range.  In each graph, 
there is a series of five curves illustrating the relationship between x and the input.  Each 
such curve was created by holding the other inputs fixed and varying only the variable 
named.  However, because there is uncertainty about what the other variables actually 
are, we have randomly selected five sets of inputs, each from its possible range, and 
plotted the collection of five curves.  (The random selections were independent from 
graph to graph.)  The resulting six graphs show, therefore, how the function is influenced 
by each of the six variables separately, but in the context of substantial uncertainty from 
the other variables.  The plot for variable d is just a scatter of points because d is a 
constant and ostensibly has no uncertainty.  Notice the slight curvature of the lines, 
especially pronounced in the plot for f.  The curves within each graph are not merely shift 
translations of each other; the lines are not all parallel.  The ordinates are all on the same 
scale, so one can see right away that varying the input variable b does not promise to give 
one much control over the output x.  The variable a, on the other hand, seems to offer 
greater control over x with minimal confounding uncertainty from the other variables, 
although an analyst might want to see many more than five replicate plots before drawing 
this conclusion. 
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Figure 4.  Variation of x as a function of its inputs. 
 

It would also be possible, albeit even more cumbersome, to depict the total 
uncertainty about x in a comprehensive way as the input variables are varied.  The ladder 
plot in Figure 5 shows how the total uncertainty about x varies as the input variable a is 
set to a constant, for five different values of this constant over its possible range [2.5, 
3.5].  The output uncertain numbers are simple shift or multiplicative translations of each 
other.   The uncertain numbers can often overlap confusingly if they were plotted on a 
single graph, but it might be practical to create animated graphs that would be useful to 
analysts with modern visualization software.   
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Figure 5.  Variation in uncertainty about x as a is varied over its possible range. 
 

The calculations in the above example assumed mutual independence among all the 
inputs, but this assumption is not essential and could be relaxed to reflect empirical 
evidence and the analyst’s uncertainty about the dependencies. 

We have now considered three different characterizations of sensitivities for functions 
involving uncertain numbers.  Figure 3 shows local derivatives, which refer to how x 
changes in response to infinitesimally small changes in a variable.  In contrast, the curves 
depicted in Figure 4 show these changes over wide ranges of the input variables.  Figure 
5 shows us what conclusions we can draw about the output in the face of the uncertainties 
of the inputs if we could somehow perfectly control one of them.  These figures are 
telling us slightly different things.  For example, the results in Figure 3 clearly indicate 
the function is most sensitive to variable f, yet, as we’ve already mentioned, Figure 4 
suggests that controlling variable a might be preferable as a management strategy if 
doing so could be cost-effective. 

The caveat about computing sensitivities as partial derivatives also applies when they 
are used with uncertain numbers:  the results reflect sensitivities to local changes.  If the 
range of an uncertain number is broad, the estimates may be hard to interpret.  This issue 
is also present but cryptic in deterministic sensitivity analyses.  How much uncertainty 
can be present before the results of the analysis become unreasonable depends on the 
function being analyzed and its inputs.  One benefit of explicitly accounting for 
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uncertainty is that the true imprecision of the resulting sensitivities and their ranks 
becomes self-evident.  It is possible, for instance, that the uncertain number obtained by 
computing the sensitivity coefficient with DST or PBA could straddle zero.  This would 
mean that the uncertainty surrounding the analysis prevents us from being sure whether 
the slope of the tangent line is positive or negative. 

What would it mean if the uncertain number characterizing the sensitivity coefficient 
computed as a local derivative were to straddle zero?  At its simplest, the uncertain 
number represents the set of slopes of the lines that are tangent to the output or response 
function at different values of the input over some range of possibilities.  This is 
illustrated in Figure 6 in which there are two examples.  The upper, left plot is a cartoon 
of a simple univariate function (shown as a gray curve) and a range of uncertainty for its 
input (shown as a black horizontal line segment).  A similar cartoon for a more 
complicated function with a range of uncertainty for its input is depicted in the upper, 
right plot.  The range of the input for the left function is narrower than for the right, and 
the left function is closer to linear over its input range than is the right function.  
(Assuming all functions we will deal with are analytic, then Taylor’s theorem suggests 
that the narrower the input range, the closer to linear the function will appear.)  Below 
each of these two plots are the same plots drawn together with tangent lines for the 
function at several points over the respective ranges of the inputs.  For the function on the 
left, these slopes are a tidy collection of whiskers, but for the function on the right, the 
slopes are an unruly jumble including both positive and negative slopes having variously 
small and large magnitudes.  The uncertain numbers computed as sensitivity coefficients 
using the methods of PBA and DST characterize all of the slopes in such collections of 
slopes, whether they are tidy or not.  For this reason, these uncertain numbers 
characterize how nonlinear a function is over the range considered.  If the sensitivity 
coefficient is a narrow uncertain number with little uncertainty, then the underlying 
function must be close to linear over this range.  If, however, the uncertainty is quite 
wide, then the function could be strongly nonlinear in the sense that it exhibits broad 
changes in the slope of its tangent lines.  If the wide uncertain number was computed to 
be best possible, then one can conclude that the function is strongly nonlinear, and not 
merely possibly so. 

 
Figure 6.  Pencils of tangent lines to simple (left) and complex (right) functions. 
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4 Sensitivity analyses within the new methods 
It is possible and often of interest to perform a sensitivity analysis on the results of an 

assessment conducted within DST or PBA.  This section explores the use of studies that 
assess the hypothetical impact on result uncertainty of additional empirical knowledge. 

One of the fundamental purposes of sensitivity studies is to learn where focusing 
future empirical efforts would be most productive.  This purpose requires estimating the 
value of additional empirical information (Morgan and Henrion 1990).  Of course, the 
value of information not yet observed cannot be measured, but it can perhaps be 
predicted.  One strategy to this end is to assess how much less uncertainty the 
calculations would have if extra knowledge about an input were available.  This might be 
done by comparing the uncertainty before and after “pinching” an input, i.e., replacing it 
with a value without uncertainty.  Of course, one does not generally know the correct 
value with certainty, so this replacement must be conjectural in nature.  To pinch a 
parameter means to hypothetically reduce its uncertainty for the purpose of the thought-
experiment.  The experiment asks what would happen if there were less uncertainty about 
this number.  Quantifying this effect assesses the contribution by the input to the overall 
uncertainty in a calculation.   

The estimate of the value of information for a parameter will depend on how much 
uncertainty is present in the parameter, and how it affects the uncertainty in the final 
result.  The sensitivity could be computed with an expression like 
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where T is the baseline value of the expression, R is the value of the expression computed 
with an input pinched, and unc( ) is a measure of the uncertainty of the answer.  The 
result is an estimate of the value of additional empirical information about the input in 
terms of the percent reduction in uncertainty that might be achieved in the expression 
when the input parameter is replaced by a better estimate obtained from future empirical 
study.  The pinching can be applied to each input quantity in turn and the results used to 
rank the inputs in terms of their sensitivities.  In principle, one could also pinch multiple 
inputs simultaneously to study interactions. 

The unc( ) measure is analogous to variance as it is used in variance-based methods 
of global sensitivity analysis (Saltelli et al. 2000).  There are many possible ways to 
define unc( ) to measure uncertainty.  In the context of DST or PBA, one obvious 
measure is the area between upper and lower bounds of the p-box, which is equivalent to 
the integral of the difference between the cumulative plausibility function and the 
cumulative belief function for a Dempster-Shafer structure.  As the uncertain number 
approaches a precise probability distribution where all epistemic uncertainty has 
evaporated and only the natural variability remains, this area approaches zero.  An 
analyst might also elect to define unc( ) as variance or some other measure of dispersion, 
or perhaps the heaviness of the tails (in the sense of Hettmansperger and Keenan 1980) of 
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the uncertain number.  Using different measures will obviously allow the analyst to 
address different questions in a sensitivity analysis.  If the measure of uncertainty is a 
scalar quantity (i.e., a real number), then the sensitivities that come from the analysis will 
also be scalars and can be ordered. 

It is worth noting that, unlike the factorizations used by variance-based sensitivity 
analyses (Saltelli et al. 2000), these reductions will not generally add up to 100% if the 
reductions for all of the input variables are summed.  This is the general situation, and 
variance-based partitions of uncertainty are unusual among possible measures of 
uncertainty.  This issue is more fully discussed in section 6.  

There are also multiple possible ways to pinch uncertainty.  Pinching in different 
ways can result in strongly different estimates of the overall value of information.  
Several strategies are possible in estimating sensitivities from comparative uncertainty 
assessments: 

(i) replace an input with a point value, 
(ii) replace an input with a precise distribution function,  

(iii) replace an input with a zero-variance interval, or 
(iv) replace an input with an uncertain number with smaller uncertainty. 

The first three strategies are extreme cases of the fourth.  Replacing an uncertain number 
with a precise probability distribution would be pinching away the epistemic uncertainty 
about the distribution.  Replacing an uncertain number with a point value would be 
pinching away both the epistemic uncertainty and the aleatory uncertainty of the quantity.  
For inputs that are known to be variable (variance greater than zero), such a pinching is 
counterfactual, but it may nevertheless be informative.  In particular, it may be especially 
useful in planning remediation strategies or manufacturing designs.   

The third strategy merits some contemplation.  Normally, the estimate of variance 
associated with an interval [a,b] is the interval [0, (b−a)2/4].  This is to say that the 
variance of any distribution whose support surely lies with the range [a,b] must have a 
variance no larger than a quarter of that range squared, which would be the case if the 
distribution had half its mass at a and the other half at b.  Its lower bound is zero because 
the true distribution might be any of many Dirac delta distributions (essentially, 
constants) within the range.   In some situations, it may be reasonable to replace an 
uncertain number with another uncertain number similar in shape to an interval but 
prescribed to have a variance of zero.  Such a pinching is hypothesizing that the quantity 
had a Dirac delta distribution whose value is within the interval.  The effect of this would 
be to pinch away the aleatory uncertainty but leave the epistemic uncertainty.  Such a 
replacement might be reasonable for uncertain numbers having a core.* 

This approach of pinching inputs and recalculating the assessment is familiar to 
Monte Carlo analysts (e.g., Iman 1987; Iman and Hora 1990; Helton et al. 1995).  

                                                 
*A p-box’s core, if it exists, is the region along the abscissa for which the upper bound of the p-box is one 
and lower bound is zero.  The core of a Dempster-Shafer structure is the intersection of all the focal 
elements.  The core of an interval is the interval itself. 
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Although they know that it has pitfalls*, many analysts routinely conduct sensitivity 
studies of the proportional contribution of variability in each variable to the overall 
variability in the calculated risk distribution (e.g., Helton et al. 1995; 1997a,b).  To 
determine the effects of variability in a Monte Carlo simulation using this method, each 
variable containing variability (i.e., expressed as a probability distribution) is reduced in 
turn to its mean or other appropriate point value, and the simulation is repeated.  The 
measure of sensitivity is often the proportional effect of variability in each variable on the 
model, which is computed as a function of the variance in the output distribution from 
each of the simulations divided by the variance in the output distribution from the 
baseline model result.  Although the general idea of pinching is known to Monte Carlo 
analysts, the notions of pinching to a precise distribution and pinching to a zero-variance 
interval have no analog in Monte Carlo sensitivity analyses. 

The rest of this section of the report will describe eight case studies that explore the 
effect of these kinds of pinching on some simple synthetic numerical examples.  Figure 7 
shows the first two case studies which illustrate pinching to precise distributions.  The top 
panel of the figure depicts the addition of two uncertain numbers A and B (assuming 
independence).  This is the baseline case against which the pinchings will be compared.  
Uncertain number A is specified as a uniform distribution whose minimum is somewhere 
between 4 and 5, and whose maximum is between 5 and 6.  Uncertain number B is 
specified as a normal distribution with unit variance whose mean is a value between 8 
and 9.  (Its tails were arbitrarily truncated at 5.4 and 11.6.)  The uncertain number on the 
right labeled A+B is the envelope of all sum distributions that are the convolutions of a 
distribution drawn from uncertain number A and a distribution drawn from uncertain 
number B.  The area between the upper and lower bounds for the sum A+B is 2.12.  The 
middle panel of the figure shows the first pinching.  Notice that it is labeled as the first of 
our eight little case studies.  The uncertain number A is pinched to the precise uniform 
probability distribution between 4.5 and 5.6, which lies entirely within the uncertain 
number depicted above it.  Under this pinching, the addition with B (which is still the 
same uncertain number) yields the resulting uncertain number shown at the far right on 
the middle panel.  This uncertain number has an area of about 1.12.  The percentage 
reduction in this area compared to that of the uncertain number for the sum shown on the 
top panel is about 47%.  This percent, which labels the sum on the middle panel, 
represents the sensitivity measure for pinching the variable A to a precise probability 
distribution.  The bottom panel of Figure 7, labeled as the second study, shows the 
reduction of uncertainty (area) for the sum A+B from pinching the uncertain number for 
B to a precise distribution instead.  In this case, B is pinched to a normal distribution with 
a mean of 8.5 and unit variance.  Compared to the baseline case in the top panel, the area 
is also reduced by around 47%.  Thus, the reductions in uncertainty from pinching either 
A or B are essentially the same in this example.  This need not always be the case. 

Given the differences between the inputs A and B, one might in fact think that the 
reductions in uncertainty from pinching them are surprisingly similar.  The variance of B 

                                                 
*These pitfalls include arbitrariness of the pinching target, complications of handling pairwise and higher-
order sensitivities, and susceptibility to gaming when multiple interests or analysts are involved. 
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is unity by construction, and pinching does not change the variance.  The variance of A is 
0.0833, which is much smaller than that of B.  Even if we had pinched to some other 
uniform distribution consistent with A, its variance could only be as large as 0.333 (which 
would be obtained if A were pinched to the uniform distribution over [4,6]).  Although 
the operation is addition, consideration of the variances or even the change in variance 
does not predict the reductions in uncertainty that were measured as the area between the 
bounds on the output.  This example shows that variance is not a good measure of the 
importance of the epistemic uncertainty associated with an input, at least relative to how 
much its elimination might reduce the epistemic uncertainty of the result as measured by 
the breadth of its bounds.  Another important dissimilarity with variance is that the 
percent reductions from A and B do not add up to 100%.  Although the reductions are 
measures of the importance of additional information for each of the inputs, they are not a 
partition constrained to sum to unity, even for additive models under independence.  
These observations make it clear that the use of breadth between the upper and lower 
bounds is not at all similar to the analogous use of variance in probabilistic sensitivity 
analyses. 
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Figure 7.  Sensitivity analyses by pinching uncertain numbers to distributions. 
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Figure 8 shows three more studies, which are a similar set of sensitivity analyses 
based on pinching epistemic uncertainty.  The calculation for the baseline case in this 
figure (shown in the top panel) was made without making any assumption about the 
dependence between the variables A and B.  For this reason, even though the uncertain 
numbers for the variables A and B are just the same as were used in Figure 7, the area of 
the sum grows to about 3.05.  This result is called the Fréchet case or the “dependency 
bounds” (Williamson and Downs 1990) for the sum.  It represents ignorance not only 
about the input distributions but also about their intervariable dependence (see Ferson et 
al. 2004 for a discussion of the Fréchet case and calculations under different assumptions 
about dependence).  The second panel of Figure 8 depicts pinching the uncertain number 
for the variable A to a precise distribution and its consequence for the resulting 
uncertainty about the sum.  The third panel likewise shows the pinching for variable B.  
Both panels are annotated with the percent reduction in the area of the uncertain number 
for the sum compared to the baseline case in the top panel.  The bottom panel shows the 
effect of pinching the dependence from the Fréchet case of assuming nothing about 
dependence to assuming independence.  The dependency bounds of the baseline case are 
replace with the bounds that would be obtained by assuming A and B are independent.  
(The pinching could have specified any particular dependence.)  These studies illustrate 
that the pinching can be carried out with dependency bounds that do not make 
assumptions about intervariable dependence, and even more interestingly, that ignorance 
about dependence can itself also be pinched.  Such pinching is a special case of strategy 
(iv) mentioned on page 25 because the uncertain joint distribution for A and B is replaced 
by a precise joint distribution that specifies their dependence. 
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Figure 8.  Sensitivity studies without dependence assumptions. 
 

Figure 9 shows two more hypothetical sensitivity studies.  The baseline case in the 
top panel is identical to the baseline case shown in Figure 7, but in this study, the 
uncertain numbers are pinched to scalar values.  The second and third panels of Figure 9 
depict the additions resulting from pinching one of the addends to a point value.  The 
observed percentage reduction in the area of each resulting sum compared to the baseline 
case is shown beside its uncertain number.  The top panel in Figure 9 depicts a baseline 
case that assumes independence between A and B.  What would the reductions in 
uncertainty have been if the baseline calculation had not assumed independence?  The 
pinchings would have yielded exactly the same results, simply because dependence 
assumptions have no effect when either of the addends is a point.  Thus, the lower two 
panels of Figure 9 would look exactly the same, but the percent reductions in area would 
have been different.  The reason for this is that, if the baseline calculation had not 
assumed independence, then the baseline uncertainty about the sum A+B would have 
been greater (area = 3.05, compared to 2.12 under independence).  That would make the 
rightmost uncertain number in the top panel of Figure 9 noticeably wider.  Therefore the 
reductions in uncertainty by pinching to a point would have been somewhat greater than 
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they were for the independent case.  Instead of 50.4% and 52.36% reductions, pinching 
the variables A and B to points under no assumption about dependence would have 
respectively yielded 65.54% and 66.9% reductions in uncertainty as measured by the area 
within the resulting uncertain numbers. 
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Figure 9.  Pinching an uncertain number to a point value. 

 

Figure 10 shows a final example sensitivity study.  The baseline case in the top panel 
consists of an uncertain number for a quantity A about which the minimum is known to 
be 4, the maximum is known to be 7, and the mean is only known to be between 5 and 6.  
(When such information is obtained from published papers, it is easy to imagine that no 
other reliable information might be available about this variable.)  The uncertain number 
labeled A is the best possible envelope on all distributions having this range and mean 
(Ferson et al. 2002).  The uncertain number labeled B is the best possible envelope on the 
set of triangular distributions whose minimum is between 7 and 9, whose maximum is 
between 9 and 12, and whose mode is between 8 and 10.  (These values were chosen to 
simplify the plots for these examples; in practice, the uncertain numbers could have 
arbitrary constraints.)  The uncertain number for the distribution of the sum A+B from 
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these two inputs is shown at the far right of the top panel.  This calculation assumed the 
variables were independent.   
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Figure 10.  Pinching an uncertain number to a zero-variance interval. 

 

In study 8, depicted in the lower panel of Figure 10, the uncertain number for the 
variable A was pinched so that it has zero variance.  This removes the aleatory 
uncertainty from A but not the epistemic uncertainty about this quantity.  Notice that in 
the lower panel the uncertain number for A has contracted to an interval.  The reason is 
that a distribution for a quantity that has no aleatory uncertainty must have a degenerate 
Dirac delta distribution that is simply a spike.  The only such distributions that fit within 
the prescribed uncertain number for A are those within its core between 5 and 6.  This 
core therefore becomes the pinched representation of the quantity without variability.  In 
addition to the visible contraction of the uncertain number, its variance, which had been a 
value known only to be between 0 and 2.25, was also set to zero.  When the uncertain 
numbers are combined in study 8, they produce the uncertain number shown on the far 
right of the lower panel.  The percentage reduction in the area of the resulting sum 
compared to the baseline case is about 32%.  This is the reduction in the overall 
uncertainty as measured by the breadth of the uncertain number, but there are other ways 
to measure uncertainty, such as variance for instance.  In the baseline case, the possible 
variance of the distribution of the sum A+B could be any value between 0 and 3.42.  In 
the pinched case, this variance must be lower than 1.2.  Thus the variance of A+B could 
be reduced by nearly 66% by removing the variability in the quantity A. 

Pinching to remove variability such as we have described here can be applied to any 
uncertain number that has a core, that is, to any uncertain number for which the left 
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(lower) bound on the 100th percentile is smaller than the right (upper) bound on the zeroth 
percentile.  That is, this kind of pinching is possible if a constant spike will fit inside the 
p-box or, equivalently, if the intersection of all the focal elements of a Dempster-Shafer 
structure is not empty.  Uncertain numbers without a core represent quantities that, 
apparently, must vary and therefore could not be any single scalar value.  It is clear that 
this kind of pinching is quite different from the pinching exemplified in Figure 9, where a 
distribution could always be replaced by a fixed, scalar value.  The two approaches are 
based on completely different conceptions of constancy.  The present approach asks what 
consequence there would be for our conclusions if a quantity which we had thought 
might be varying were discovered to actually be fixed.  The previous kind of pinching 
asks about the effect of holding a varying quantity to some fixed value.  Presumably, the 
process underlying this approach could only be actualized by some engineering 
intervention designed to regulate the quantity’s magnitude.  These are obviously different 
kinds of questions for a sensitivity analysis, and both seem to be useful for different 
purposes. 

4.1 Effect of the arbitrariness in pinching 
In the examples discussed so far in this section, the uncertain inputs were pinched in 

particular ways.  In the sensitivity study summarized in Figure 7, for instance, we 
pinched the input A to a precise probability distribution, but there are many distributions 
we might have used to replace the uncertain number.  In some situations, there may be an 
obvious candidate for the hypothetical input to which the uncertain number should be 
pinched.  This may be the “best” estimate, whether a distribution or point value, or a 
central estimate in some sense, or the nominal estimate used in a preliminary assessment.  
In many cases, however, the pinching will necessarily be arbitrary because there will be 
many possible choices to replace an uncertain number.  In each of these cases so far, the 
pinching used was not the only one possible.  Other potential pinchings will typically 
yield different calculated reductions of overall uncertainty.  What effect does the choice 
of the distribution or point have on the sensitivity estimate? 

In study 1 (illustrated in the middle panel of Figure 7), pinching the uncertain number 
A to the uniform distribution between 4.5 and 5.5 yielded a reduction of uncertainty of 
47.1%.  How much bigger or smaller might this percentage have been had we pinched A 
to some other probability distribution consistent with what is known about A?  In other 
words, if we replace the p-box with other probability distributions that lie within the p-
box, how different might this percentage be?  Using a simulation study that randomly 
replaces A with a uniform distribution whose endpoints are consistent with the uncertain 
number and redoing the reduction calculation, one can find that the possible reductions in 
uncertainty are always within the range [46.2, 50.4]%.  Similar simulations can be 
constructed to explore the ranges of uncertainty reductions for other variables in the other 
sensitivity studies.  The table below summarizes the results from such simulations for the 
eight studies depicted in Figure 7 though Figure 10.  Notice that the point pinchings in 
studies 6 and 7 do not create any variation in the percent reductions observed.  The 
reason for this is that, for the function of addition, the breadth of the output is totally 
determined by the breadth of the unpinched input whenever the other input is a scalar.  
(This would not have been the case if the function had been multiplication rather than 
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addition.)  There was no variation in the percent reduction that resulted from pinching the 
uncertain number B in studies 2 and 4 either.  In this case, however, the reason was that 
the uncertain number was defined as a class of distribution functions that all had the same 
variance, so all the pinchings were different only in their means.  Consequently, the 
reduction in the breadth of the sum was always the same. 

 

 Sensitivity Pinched Range of percent  Least  Greatest 
 study input reductions pinching pinching 

 1 A [46.2, 50.4] A = uniform(4,6) A = 5  
 2 B 47.2   −   − 
 3 A [0, 65.6] A = uniform(4,6) A = 5  
 4 B 32.8   −   − 
 5 (dependence) [30.4, 32.5] Clayton (r = −0.64) comonotonic 
 6 A 50.4   −   − 
 7 B 52.3   −   − 
 8 A 32.3   −   − 
 

The last two columns of the table give the assignments that led to the smallest and 
largest reductions.  For instance, pinching A to the uniform distribution between 4 and 6 
resulted in a 46.2% reduction in uncertainty compared to the original uncertain number, 
and pinching it to the constant value of 5 yielded a reduction in uncertainty of 50.4%.  In 
study 5, the Fréchet non-assumption about dependence was pinched to an assumption of 
independence.  The simulation showed that assuming that A and B were monotone 
functions of each other, either positively or negatively, the reduction in uncertainty would 
be largest.  This relationship is called comonotonicity (Ferson et al. 2004).  The 
simulation achieved the smallest reduction in uncertainty when the relationship between 
A and B was described by an intermediate dependence function described by Clayton 
(Nelsen 1999; Ferson et al. 2004) with correlation coefficient r = −0.64. 

Notice that the range of variation in percent reduction of uncertainty is often small or 
zero, but that it can also be rather large.  For instance, in study 3 (which is illustrated in 
the second panel of Figure 8), the reduction ranges from zero to almost 66%.  The lower 
bound in this case comes from pinching the uncertain number A to a uniform distribution 
between 4 and 6.  It might be initially surprising that this same pinching was associated 
with a change of only a few points in study 1 but, in study 3, has totally erased any 
reduction in uncertainty.  The reason for this is that the stricture of independence that 
governed and constrained the results in study 1 was absent from study 3.  Because the 
range of the pinched input A is the same as that of the original uncertain number, the best 
possible bounds on the convolution without making any assumption about dependence 
(the Fréchet case) are just the same as they were for the baseline case, yielding possibly 
no reduction of uncertainty.  This is not always true; if the function had been 
multiplication rather than addition, the smallest possible reduction in uncertainty for the 
Fréchet case would have been small but bigger than zero.  Likewise, the simulation result 
for study 4 shows that the range of reductions is not always wide under the Fréchet 
assumption.  In this study, it is a constant.  In study 8, there is no uncertainty about the 
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percent reduction because there is only one possible way to pinch the aleatory uncertainty 
from A while retaining its epistemic uncertainty.  

For several of these numerical examples, the chore of discovering the extremal 
reductions is relatively simple because the uncertain distributions represent sets of 
distribution functions that can be parameterized by one or two dimensions.  For instance, 
input A in Figure 7 through Figure 9 consists of all uniform numbers between a minimum 
ranging on [4, 5] and a maximum ranging on [5, 6].  Thus, the simulation only needs to 
select minima and maxima randomly from these two ranges to construct all possible 
distributions consistent with the uncertain number.  Likewise, the input B for the same 
studies represents all unit-variance normal distributions with means on the interval [8, 9], 
so the simulation need only select one mean at random.  The problem is not much harder 
for the class of triangular distributions used for input B in Figure 10 as only three values 
need to be selected. 

However, in general, the simulation problem is much harder than these simple cases 
would suggest.  Consider, for example, the distribution-free input A in Figure 10 defined 
by a minimum, maximum and mean.  In this case, there is no family of input distributions 
that can be parameterized in a small number of dimensions.  In fact, the set of distribution 
functions corresponding to this uncertain number is infinite-dimensional, which means 
that you would in theory need an infinite number of parameters to specify all the 
distributions in the class represented by this uncertain number.  (In practice, this just 
means that you would have to specify a graph of the distribution that shows the 
cumulative probability for each possible value of the abscissa.)  The consequence of this 
complexity is that we cannot expect any simulation strategy to reliably discover the full 
extent of the class of distributions.   

The same problem afflicts the calculation of the range of reductions that are possible 
with different dependence patterns.  There are infinitely many possible dependence 
relations between A and B, and there is no way to use a simulation approach to properly 
sample their diversity.  The range of reductions we found for study 5 is not guaranteed to 
be comprehensive (Ferson and Hajagos 2006; Ferson et al. 2004).  We obtained this 
range by varying correlation coefficients from −1 to +1 for a handful of dependence 
families (copulas).  Methods need to be developed that can compute rigorous bounds on 
uncertainty reductions for this situation. 

Sometimes the problem of computing the range of reduction is straightforward and 
computationally easy.  In such cases, the results are comprehensive and reveal how much 
or little one can trust the estimate of the sensitivity.  In other cases, however, depending 
on whether the uncertainty involves the form of dependency or the family of 
distributions, the problem is considerably harder.  It will often still be possible to conduct 
simulations and obtain so-called “inner bounds” on the range of reductions due to the 
arbitrariness of the pinchings.  Such ranges are not guaranteed to enclose all possible 
reductions, but they still might be usefully informative. 

4.2 Different measures of uncertainty 
Aside from the arbitrariness considered in the previous section from the values or 

distributions to which the uncertain numbers are pinched, there is also an element of 

 34 



arbitrariness—or perhaps we should say flexibility—in how the uncertainty is measured.  
This report has elected to use breadth, i.e., the area within the p-box or between the 
cumulative plausibility and cumulative belief functions of a Dempster-Shafer structure, 
as the unc( ) function.  Many researchers in probabilistic sensitivity analysis have 
suggested that variance is the natural way to measure uncertainty of probability 
distributions (e.g., Saltelli 2003; Saltelli and Tarantola 2002).  Others have argued that 
entropy is the best such measure (e.g., Jaynes 2003). 

We believe that there are many possible measures of uncertainty, both in (precise) 
probabilistic models and in imprecise probability models such as DST and PBA.  Besides 
the breadth, variance and entropy, we might also consider the simple range or the 
interquartile range.  Hall (2006) suggested the use of relative entropy, which is the 
Kullback distance* between the distribution of the model output and each input 
distribution. 

There is an important practical issue to consider when defining unc( ): scalar 
measures are easier to work with.  Variance and entropy for probability distributions are 
scalars, but uncertain numbers—as we have defined them—in general represent classes 
of probability distributions.  This suggests that “the” variance or entropy for an uncertain 
number will typically be a set of scalar values rather than a point value.  For example, 
because the formula for the entropy of a continuous uniform distribution with width w is 

, the entropy for the uncertain number A in the top panel of Figure 7 is the range 
(−∞, 1].  The upper bound is the entropy of the uniform distribution ranging between 4 
and 6.  The lower bound represents the entropy of a degenerate Dirac distribution at 5 
which is also a member of the class.  But just because there is epistemic uncertainty 
present does not mean that the variance or entropy measures will be intervals.  For 
instance, the uncertain number B in the top panel of Figure 7 has unit variance, or rather 
each distribution that is consistent with it has unit variance.  Therefore, its variance must 
simply be one.  Likewise, because all the distributions in this p-box are normals and 
because the formula for the entropy of a normal distribution with parametric standard 
deviation σ is 

( )w2log

( )eπ2σlog2 , the entropy for B is the scalar number 2.047.  This happens 
because all of the distributions in this class have the same shape and dispersion.  Thus the 
p-box has constant entropy even though it would seem to have significant epistemic 
uncertainty. 

Several researchers (e.g., Klir 2006; Ross 2005; Hall 2006) have studied the issues 
surrounding how a scalar measure of overall uncertainty might be defined in the general 

                                                 
*The Kullback distance between a probability distribution P and a theoretical probability distribution Q is, 
in the discrete formulation,  

∑
i iQ

iPiP
)(
)(log)( 2

. 

This distance is interpreted as the expected extra message length per datum needed to communicate a value 
when an encoding is optimal for a given distribution Q, rather than using an encoding based on the true 
distribution P. 
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context of imprecise probabilities.  Information entropy is widely regarded as the 
measure of randomness (Jaynes 2003), and some have suggested that the maximum 
entropy of any distribution consistent with an uncertain number might be a suitable 
measure of overall uncertainty for an uncertain number too (e.g., Klir 2006).  One can 
also imagine defining overall uncertainty as the largest variance of any distribution 
consistent with an uncertain number, or the range of variances, or the width of the range 
of variances, i.e.,  the difference between the largest and smallest possible variance.   

Each possible definition of unc( ) measures a particular feature of the uncertain 
number that might be appropriate in some particular setting or application.  For instance, 
the breadth of any precise probability distribution is always zero, so this measure would 
not be useful when there is no epistemic uncertainty at play.  The first column of Figure 
11 illustrates this.  It shows a spike representing the Dirac delta distribution of a scalar 
number, a distribution that looks like an exponential distribution, and a uniform 
distribution, which all have the same breadth of zero even though they are quite 
dissimilar from one another.  Likewise, the middle column depicts a uniform distribution, 
a p-box and an interval that all have the same largest possible entropy (which is that of 
the uniform distribution from the lower, left corner to the upper, right corner).  The last 
column points out that range as an overall measure of uncertainty would not distinguish 
any distributions having the same support, or even the same width of their support.   

There are many measures of overall uncertainty that an analyst might employ, and no 
single measure seems to be best for all uses.  Moreover, it seems clear that any scalar 
measure of overall uncertainty must be profoundly limited in one way or another.  After 
all, it is a scalar measure attempting to characterize something that an entire interval, 
distribution, p-box or Dempster-Shafer structure is expressing.  Nevertheless, as long as 
the analyst is aware of the properties of the measure employed to characterize overall 
uncertainty, its use in defining measures of sensitivity seem to be sound. 
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Figure 11.  Uncertain numbers that three common measures of overall uncertainty 
would not distinguish. 

 

5 Case study: dike revetment 
This section considers a small case study involving a dike’s reliability assessment to 

illustrate the methods discussed in this report for sensitivity analysis with uncertain 
numbers. 

Figure 12 depicts a schematic diagram of a dike and its revetment, which is the 
seaward facing of masonry that protects it from the surf.  The reliability of the structure 
depends in part on the density and thickness of the revetment and its angle of inclination.  
A reliability formula of strength minus stress for such a dike was given by Hussarts et al. 
(2000) and modified by Hall and Lawry (2001) as 

sM
HDZ

)cos(
)tan(

α
α

−∆=  

where ∆ is the relative density of the revetment blocks, D is their thickness, H is the 
significant wave height (which is the defined to be the average height of the highest one 
third of waves), α is the slope of the revetment, s is the offshore peak wave steepness, 
and M is the model parameter, which is a factor introduced to represent the analyst’s 
uncertainty about the model itself.  If the reliability function Z is surely positive, then the 
dike is inferred to be reliable.  If, however, Z takes on negative values, then the structure 
is not sufficiently strong to withstand the stresses from the sea.  The probability that Z is 
positive is taken to be the reliability of the structure. 
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Figure 12.  Dike revetment (redrawn from Hussarts et al. 1999). 
 

For this example, we will suppose that 

 ∆ ∈ [1.60, 1.65],  

 D ∈ [0.68, 0.72] meters,  

 α ∈ arc tangent([0.32, 0.34]) = [ 0.309, 0.328] radians,  

 M ∈ [3.0, 5.2],  

H ~ Weibull(scale = [1.2,1.5] meters, shape = [10,12]), and 

s ~ normal(mean = [0.039,0.041], stdev = [0.005,0.006]). 

For the purposes of this example, we’ve modified these assignments from those used by 
Hall and Lawry (2001).  Some of the parameters have interval uncertainty;  for ∆, D, α 
and M we are only specifying bounds on the possible values.  The parameters H and s, on 
the other hand, are known to vary stochastically because they are functions of weather, 
seasonality and the chance of storm events.  Their probability distributions are 
imprecisely characterized however.  In this case, the analyst feels confident about 
specifying the shapes of their distributions, but can only bound the distributional 
parameters. 

In the following subsections, we review the traditional probabilistic approach to 
propagating the expressed uncertainty, the generalization with uncertain numbers using 
the new methods of DST and PBA, the calculation of local derivatives, and a sensitivity 
analysis via pinching studies.  
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5.1 Traditional probabilistic approach 
A traditional reliability assessment such as might be implemented in a Monte Carlo 

simulation would require the selection of (precise) probability distributions for each 
input.  For uncertainty expressed as intervals it is common to select a uniform distribution 
over the given range.  For the two distributions H and s, a traditional approach might 
have used the best estimates of the parameters.  For this example, we shall assume these 
would be the midpoints of the respective intervals.  The inputs for a Monte Carlo 
simulation would therefore be 

 ∆  ~ uniform(1.60, 1.65),  

 D  ~ uniform(0.68 meters, 0.72 meters),  

 α  ~ arc tangent(uniform(0.32, 0.34)),  

 M  ~ uniform(3.0, 5.2),  

H  ~ Weibull(scale = 1.35 meters, shape = 11), and 

s  ~ normal(mean = 0.04, stdev = 0.0055). 

These inputs are depicted as cumulative distribution functions in Figure 13.  Had any of 
the inputs not been specified as to distribution family, a traditional probabilistic 
assessment might have used the maximum entropy criterion (Jaynes 2003) to select the 
distribution from the available information. 

The result of convolving these distributions together in a Monte Carlo simulation 
based on 10 million replications is the distribution depicted as a dotted curve in Figure 
14.  This calculation suggests the chance that Z is negative is about 0.0000141.  Many 
replications were needed to obtain an accurate measure of this risk, because it is in the far 
left tail of the distribution. 
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Figure 13.  Probability distribution inputs for the dike reliability assessment. 
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Figure 14.  Distribution of reliability Z from a traditional Monte Carlo analysis. 
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5.2 What-if sensitivity analysis with DST and PBA 
Because the inputs are assumed to be independent of one another, the function Z is 

easy* to compute using PBA and DST (Yager 1986; Williamson and Downs 1990; 
Ferson et al. 2003; Ferson and Hajagos 2004). 

All six uncertain inputs are depicted in Figure 15.  The upper bound of each p-box is 
the cumulative plausibility function for the variable and its lower bound is its cumulative 
belief function.  Four of the inputs are simple intervals, which are degenerate p-boxes and 
Dempster-Shafer structures having only one focal element.  The other two inputs, H and 
s, are specified as known distribution shapes with imperfectly known parameters given as 
intervals.  Ferson et al. (2003) detailed how such information about H and s can be 
summarized as p-boxes, and how they can, via a discretization of horizontal slicing be 
decomposed into Dempster-Shafer structures.   
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Figure 15.  Uncertain number inputs for the dike reliability assessment. 

                                                 
*Interestingly, although the variable α is uncertain and repeated in the expression for Z, it does not lead to 
an inflation of the uncertainty in this particular example.  The reason is that the function is monotone 
increasing over the range of this variable’s uncertainty. 
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The Dempster-Shafer structure for the variable ∆ is a single interval-mass pair 
{([1.60, 1.65], 1.0)}.  Likewise, the Dempster-Shafer structures for D, M and α are 
{([0.68, 0.72] meters, 1.0)}, {([3.0, 5.2], 1.0)}, and {([0.309, 0.328] radians, 1.0)} 
respectively.  The Dempster-Shafer structures for the other two inputs must be obtained 
by discretizing their p-boxes.  Using one hundred equiprobability levels, these 
discretizations yield {([0, 1.02], 0.01), ([0.76, 1.08], 0.01), ([0.81, 1.12], 0.01), …, ([1.34, 
1.75], 0.01), ([1.36, 1.77], 0.01)} for the input H, and {([0.0235, 0.0294], 0.01), ([0.0250, 
0.0307], 0.01), …, ([0.0493, 0.0550], 0.01), ([0.0506, 0.0565], 0.01)} for the input s. 

The mechanics of the calculation with these uncertain numbers are the same in both 
PBA and DST and involve the creation of a Cartesian product between all the focal 
elements of all six inputs.  Ordinarily, this would generate a six-dimensional Cartesian 
product, but, in this case, because four of these inputs have only a single focal element, 
the Cartesian product ends up being simple enough to depict as a two-dimensional matrix 
of size 100×100 consisting of the combinations of all possible pairs from the 
discretization of inputs H and s.  The resulting Cartesian product is displayed below. 

 

 
Z(∆,D,M,α,H,s) 
Independent 

[0, 1.02]  
0.01 

[0.76, 1.08]  
0.01 

[0.81, 1.12]  
0.01 

… [1.34, 1.75]  
0.01 

[1.36, 1.77]  
0.01 

 
[0.0235, 0.0294] 
0.01 

 
[0.290,1.19] 
0.0001 

 
[0.242, 0.903] 
0.0001 

 
[0.213, 0.882] 
0.0001 

 
 

 
[−0.275, 0.682] 
0.0001 

 
[−0.294, 0.675] 
0.0001 

 
[0.0250, 0.0307] 
0.01 

 
[0.314, 1.19] 
0.0001 

 
[0.268, 0.909] 
0.0001 

 
[0.239, 0.889] 
0.0001 

 
 

 
[−0.233, 0.693] 
0.0001 

 
[−0.252, 0.686] 
0.0001            .           .           . 

    .  .   . 
  

 
[0.0493, 0.0550] 
0.01 

 
[0.536, 1.19] 
0.0001 

 
0.503, 0.980] 
0.0001 

 
[0.483, 0.965] 
0.0001 

 
 

 
[0.145, 0.818] 
0.0001 

 
[0.132, 0.813] 
0.0001 

 
[0.0506, 0.0565] 
0.01 

 
[0.544, 1.19] 
0.0001 

 
[0.511, 0.983] 
0.0001 

 
[0.491, 0.968] 
0.0001 

 
 

 
[0.158, 0.823] 
0.0001 

 
[0.145, 0.818] 
0.0001 

 

The margins of this Cartesian product are the discretization of the uncertain number H 
(displayed as the top row) and the discretization of the uncertain number s (displayed as 
the leftmost column).  Each element of the margins consists the focal element (displayed 
within square brackets) and its associated mass (displayed below each interval), which is 
always 0.01 in this case study.  Each cell within the Cartesian product is also an interval 
together with its associated mass.  Because s and H are independent, the mass associated 
with each of these 10,000 cells is 0.01×0.01 = 0.0001, so that their sum over all the cells 
is exactly unity.  These masses are written as the lower lines of the cells.  On the upper 
line of each cell is the interval, that is, the focal element of the output Z, with which the 
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mass is associated.  Each interval is computed by applying the reliability function to the 
intervals for that cell   

j

i
ji sM

H
DZ

)cos(
)tan(

,
α

α
−∆=  

where Hi and sj are the ith and jth focal elements from discretized Dempster-Shafer 
structures for H and s respectively.  For instance, the first focal elements from H and s are 
H1 = [0, 1.02] and s1 = [0.0235, 0.0294] respectively, so the first entry in the upper, 
leftmost cell of the Cartesian product is 
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which is computed by straightforward application of the elementary rules of interval 
arithmetic (Moore 1966).  By convention, the intervals are expressed with outward-
directed rounding, which is to say, the lower bounds are always rounded down and the 
upper bounds are rounded up.  Each of the computed intervals has units of meters. 

These 10,000 focal elements are reassembled into the p-box displayed as the (solid) 
bounds on the reliability distribution for Z in Figure 16.  These bounds reveal the chance 
that Z is negative is within the interval [0, 0.044], which is to say that it is surely less than 
about one in twenty three.  The breadth of this interval probability reflects the epistemic 
uncertainty embodied in the uncertain numbers given for the six input variables.  For 
comparison, the distribution from the prior Monte Carlo simulation is also shown in the 
same figure as a dotted curve. 
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Figure 16.  Bounding (solid) and Monte Carlo (dotted) estimates for the distribution 
of reliability Z. 
 

The random variables in this expression are assumed to be independent, although we 
could have assumed otherwise, or even made no assumption about their dependence, and 
used the same approach.  PBA supports convolutions under several models of 
dependence (Ferson et al. 2004).  For instance, even if we assumed nothing about the 
stochastic dependencies among the input parameters, we could have concluded that the 
risk that Z could be negative is surely smaller than roughly 0.24, or a little less than one 
in four.   

We note that the difference between the result from the traditional probabilistic 
analysis and those from the new methods is substantial.  Using the more comprehensive 
new methods, the risk of dike failure is seen to be over 3,600 times larger than was 
originally estimated, and much larger still if the independence assumptions are relaxed.  
Large discrepancies between the traditional and new analyses are common, especially for 
tail risk calculations. 

5.3 Second-order probabilistic analysis 
How would the results of a second-order or “two-dimensional” Monte Carlo analysis 

compare with those seen in sensitivity study using p-boxes and Dempster-Shafer 
structures?  To answer this question, we also conducted a second-order Monte Carlo 
simulation for the dike revetment case study.   

The simulation used 10,000 Monte Carlo replications in the outer loop and a semi-
analytical convolution (Kaplan 1981) using a 1000 discretization levels in the inner loop.  
Like the traditional, one-dimensional probabilistic approach described in section 5.1, this 
simulation used uniform distributions to model the epistemic uncertainty in ∆, D and M.  
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The epistemic uncertainty about the mean and standard deviation of the normal 
distribution for s and the scale and shape parameters for the Weibull distribution for H 
were also modeled with uniform distributions.  By taking arc tangents of a uniformly 
distributed deviate, we modeled the epistemic uncertainty about α as a tangent-uniform 
distribution.  The selection of the values of these eight variables occurred in the outer 
loop of the simulation and the values were then held constant in the inner loop.  The 
inner-loop convolution between the distributions for s and H used a discrete 
approximation using one million values (1000×1000 discretization levels).  All variables 
were assumed to be independent of one another.  All distribution parameters were also 
assumed to be independent within and across distributions. 

The results of this analysis were 10,000 possible distributions for the Z variable.  The 
mean cumulative probability at Z = 0 was 0.000149 = 1.49×10−4.  The largest such 
cumulative probability for any of the 10,000 was only 0.008.  The result of DST and PBA 
suggest that the largest risk of Z being negative could be almost 300 times larger than the 
mean risk, and over 5 times larger than the second-order probabilistic analysis ever saw 
in 10,000 replicates.  This case study illustrates that both traditional and second-order 
probabilistic analyses depict much smaller risks than are revealed by the new methods of 
DST and PBA.  The discrepancy is so stark that one might suspect that the new methods 
are somehow inappropriately inflating the risks.  It is easy to check this is not the case, 
however.  The dike revetment case study is simple enough to confirm the results of the 
DST and PBA calculation by inspection.  The extreme risk occurs when α, the standard 
deviation of the normal distribution, and scale (first) parameter of the Weibull 
distribution are at the high ends of their respective ranges, and all the other parameters 
are at the low ends of their ranges.  Given that these ranges were intended to represent 
epistemic uncertainty rather than aleatory uncertainties, it is presumably entirely 
plausible that such a combination of values (or at least values close to these) might 
actually occur.  If this is the case, then it is clear that both the traditional and the second-
order assessments are understating the plausible risks.  Because they do not use 
assumptions that uncertain parameters vary according to a uniform (or any other) 
distribution or that variables and parameters are independent (or have any other 
dependency) unless such assumptions are warranted, PBA and DST can reveal the full 
uncertainty about the risks for the dike revetment. 

5.4 Local derivatives 
The partial derivatives of the Z reliability function with respect to its six inputs are  
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These formulas can be evaluated using the uncertain number estimates for the inputs that 
were depicted in Figure 15 using PBA or DST.  The results of these calculations are the 
sensitivity coefficients displayed in Figure 17.  Even though the overall uncertainty is 
large, the results are quite informative.  In particular, they are all sign-determinate, 
although a few extend to the origin in their tails.  A ranking that seems to survive the 
large uncertainty is, from largest positive to largest negative, s, D, ∆, M, H, α.  The 
largest sensitivity is to the peak wave steepness s.  It is almost surely larger than any of 
the positive sensitivities, and could be much larger in absolute magnitude than the 
sensitivity to the dike’s angle of incline α, which is the second largest in magnitude.  In 
fact, most of the generalized sensitivity coefficients don’t overlap much, except at their 
extreme tails.  The peak wave steepness presumably represents the effects of weather and 
tidal cycles and is probably not under the engineer’s control, unless other features of the 
harbor or near-shore environment could be modified.  The angle of incline α and the 
thickness of the revetment blocks D, however, are perhaps the most suitable variables for 
manipulation to affect the magnitude of Z.  It is interesting and important that the 
sensitivity to the model uncertainty factor M is fairly small compared to the other inputs.  
This suggests that the doubt it represents about the structure of the model may be of 
moderately small significance.  The table below summarizes some of the statistics of 
these sensitivity coefficients. 

Sensitivities 
Coefficient Range  Mean  Median  Variance 
 ∂Z/∂∆ [0.68, 0.72] [0.68, 0.72] [0.68, 0.72] [0, 0.0004] 
 ∂Z/∂D [1.6, 1.65] [1.6, 1.65] [1.6, 1.65] [0, 0.000625] 
 ∂Z/∂α [−5.01, 0] [−3.20, −1.37] [−3.22, −1.38] [0.0660,0.941] 
 ∂Z/∂M [0, 0.461] [0.070,0.295] [0.0700,0.296] [0.000196,0.0142] 
 ∂Z/∂H [−0.780, −0.272] [−0.615, −0.319] [−0.607, −0.319] [0.00246, 0.0286] 
 ∂Z/∂s [0, 29.359] [4.5004, 11.902] [4.3544, 11.355] [0.57662, 26.852] 
 

Except for the second and penultimate lines of this table, the intervals have units of 
meters, or square meters for the variances. 
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Figure 17.  Local sensitivities of the reliability function to its uncertain inputs. 

 

5.5 Reductions in uncertainty by pinching 
The local derivatives computed in the previous section above allow analysts to 

discern which variables might be manipulated to obtain the largest impacts on the 
reliability Z.  This section considers the calculation of potential reductions in uncertainty 
by pinching the uncertain inputs to remove epistemic uncertainty.  This analysis reveals 
which input variables should be the focus of future empirical effort so that our overall 
uncertainty about Z might be minimized.  The results of applying the pinching strategies 
described in section 4 are displayed in the summary table below. 

 

Percent reduction of uncertainty 

  Nominal  All possible 
 Input pinching pinchings  

 ∆ 5.5 [   4.7,  5.7] 
 D 10.0 [   9.2,  11.0] 
 M 53.0 [ 41.0,  60.0] 
 α 6.5 [   3.8,  9.1] 
 H 23.0 [ 15.0,  30.0] 
 s 3.6 [   2.0,  5.2] 
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The middle column shows the percentage reduction in uncertainty about Z that was 
obtained by replacing the uncertain number named in the first column with a nominal 
value.  This nominal value was either a scalar number or the precise probability 
distribution used in the traditional probabilistic assessment.  For the four inputs 
characterized by intervals (∆, D, M and α), the uncertain number was pinched to the 
midpoint of its interval.  In the case of the input H, the variable was pinched to a Weibull 
distribution with scale parameter 1.35 meters and shape parameter 11.  For s, the nominal 
pinching was to a normal distribution with mean 0.04 and standard deviation 0.0055. 

The third column of the table shows the range of uncertainty reductions that could be 
obtained from all possible pinchings of the given input.  In the cases of the four inputs 
that were given as intervals, the simulations solved constrained optimizations to discover 
the range of reductions in uncertainty that could be obtained by pinching the input to any 
probability distribution or scalar that was consistent with its uncertain number.  A scalar 
is consistent with an interval if it lies within the interval.  A probability distribution is 
consistent with an interval if its support lies entirely within the interval.  For the inputs H 
and s, the uncertain numbers were specified as having Weibull and normal distributions 
respectively, which were parameterized by intervals.  For these variables, the simulations 
sought the range of reductions that could be obtained by pinching the input to a particular 
distribution of the specified shape such that the parameters of this distribution were 
consistent with the parameters’ specified limits.  The constraint analyses for this case 
study were easy to do, although such analyses in general could be fairly complex (Jaulin 
2001; Walley 1991). 

The results of these pinching analyses suggest which uncertain numbers deserve 
focus in future empirical studies to reduce the overall epistemic uncertainty about the 
reliability Z.  The percent reductions from the nominal pinchings suggest that M would be 
best to study, followed by H, D, α, ∆ and s, in that order.  The ordering among M, H and 
D is only reinforced by the reduction ranges, which agree with it despite the large 
uncertainties that are present.  In other words, the rankings would not change, no matter 
how the pinching might be done.  This gives us considerable confidence in the surety of 
this finding.  The rankings among α, ∆ and s, however, are confused when we look at the 
reduction ranges because their ranges overlap broadly.   

To reduce the overall epistemic uncertainty about the dike’s reliability, it would be 
most effective to study the value M which is the model uncertainty factor that the analysts 
introduced to account for their own discomfort at what they felt was an overly precise 
model.  It is especially interesting that this analysis reveals that M contributes a lot to 
epistemic uncertainty about Z, particularly because, as we saw in the previous section, 
altering M would have little effect on the magnitude of Z itself.  This discrepancy is not 
really counterintuitive in any way, but probabilistic sensitivity analyses that do not 
distinguish epistemic and aleatory uncertainty in the way we have here might not have 
recognized that the model can be epistemically sensitive to the input M without its being 
a useful focus of management or control.   
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6 The anova myth 
This brief section criticizes a view that is becoming very common in probabilistic 

sensitivity analysis that variance is the appropriate measure of uncertainty. 

The importance of a parameter in an uncertainty analysis is the degree to which its 
uncertainty contributes to the uncertainty of the output.  This notion has been called 
“sensitivity” by Saltelli  (2003) and “influence” by Andres (2003).  Andres (2003) 
asserted that there can be at most 10 influential variables if we define an ‘influential 
variable’ as one that contributes no less than 10% of the uncertainty.  The idea is that 
simply that no more than 10 variables could have more than 10% of a total which seems 
to be tautological.  This claim depends on the idea that what’s important about 
uncertainty is the variance, and the properties of the variance, particularly, the fact that 
the variance can be partitioned into components. 

Of course, variance is not the only measure of uncertainty.  In fact, very few of the 
reasonable measures of uncertainty actually behave in this way.  Consider, for instance, a 
parameter’s range, i.e., the difference between the largest and smallest possible values.  It 
is obviously another measure of uncertainty and it is commonly used for this purpose.  It 
does not partition like variance does in the way needed for Andres’ computational 
strategy to work.  For instance, consider the following simple uncertainty analysis 
conducted with interval analysis.  Suppose there are 3 parameters to be multiplied 
together.  And suppose for this example that the uncertainty about these parameters is 
such that each ranges on the interval [0, 2].  Obviously, the range of the product is just 
the interval [0, 23] = [0, 8].  Replacing any one of the parameters by its midpoint would 
reduce the range of the product by half to [0, 4].  If we measured the importance of a 
parameter by the reduction in the width of these intervals, we would say that the 
importance of each of the three parameters was 50%.  Now suppose that there are many 
such parameters to be multiplied.  No matter how many parameters there are, the 
importance of each is 50%.  This little example shows that uncertainty, as distinguished 
from variance, need not partition in the way Andres suggests it must.  This does not 
depend on the uncertainties of the inputs being similar in magnitude.  If the importance of 
a parameter is measured by the percent reduction of uncertainty associated with removing 
the parameter from the model (or pinching it to its mean or some other scalar value), 
uncertainty analysts often observe that the sum of these importance values for the various 
parameters add up to something larger than 100%.  We argue that one cannot overcome 
this example by claiming that range is a somehow odd or unreasonable measure of 
uncertainty.  The underlying truth is that uncertainty is a complicated and multivariate 
notion that cannot really be captured completely by the fairly simplistic notion of 
variance.  

Andres (2003; cf. 2004) offered as an example the Canadian House of Commons, 
which is the lower house of the Parliament of Canada, and argued that the number of 
influential members of parliament were necessarily few.  Andres’ legislative example 
may itself provide a counterargument to his idea that influential variables are necessarily 
few.  In some legislative bodies, notably the United States Senate, the rules enable 
members to obstruct legislative work with a filibuster, by which any senator can prevent 
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a vote on any question.  Senators jealously guard their right of filibuster, precisely 
because it is so empowering to each of them.  It enables a senator to derail any legislation 
that might come under consideration by the chamber.  In this sense, it is a right of veto 
that can only be denied by a three-fifths vote of cloture (to limit debate).  Thus, if we 
measure the importance of a senator by his or her ability to kill legislation, we must admit 
that each of the hundred senators truly is influential, or at least could be.   

Even in the context of the parliamentary metaphor, we can see clearly that ‘what is 
important’ is much more complicated than what can be represented in the narrow 
statistical notion of explaining variance.  As already emphasized, variance is not the only 
measure of uncertainty, and moreover, variance is often not even a very useful measure 
of uncertainty if it is exceedance risks or tail probabilities that are of concern (which they 
usually are).  Variance may partition, but uncertainty in the wider sense may not.  
Because the idea that partitioning of variance extends to other measures of uncertainty 
can lead to dangerous misconceptions, we call it the “anova myth”. 

Analysts often suggest it is an empirical fact that influential parameters are typically 
few in number in many practical situations in uncertainty analyses (Morgan and Henrion 
1990; Cullen and Frey 1999).  We would not dispute this idea.  Indeed, we observe that it 
is often true as well.  However, it seems clear that we cannot simply assume this will 
always be the case as Andres argues it is.  The reason for the observation that only a few 
variables matter probably has to do with elementary combinatorial facts about the number 
of possible patterns with unequal distribution compared to the number of patterns with 
roughly equal distribution, rather than any mere definitional constraints. 

7 Application to hard black box models 
A black box model is one whose internal computational details are unknown to the 

analyst.  Black box models are common in some engineering settings when, for example, 
the internal details should not be publicized for security, confidentiality, or intellectual 
property concerns, or when the internal details are available, but are so complex that 
projecting analyses through them is impractical.  Some businesses and government 
agencies actually use legacy computer models for which the original source code has 
been lost.  Sampling, in which the model is applied to a given set of input values and 
returns one or more output values, is often the only effective means to study black box 
models.  This makes the study of computational black boxes much like empirical 
scientific inquiry of the nature world in that we can see the outcomes generated under 
particular input conditions, but cannot directly see into the inner workings that produced 
those results.   

A hard black box model is one for which the number of samples is tightly constrained 
because of computational difficulty or other limits.  The larger and more computer-
intensive codes become, the harder the black box models are.  Although the raw 
computational power available to analysts is still exponentially expanding, computer 
simulation codes are often developed with similarly increasing scientific and engineering 
complexity at the limits of practical computability.  For practical purposes, we are 
interested in methods that can be applied to black box models in general, and especially 
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in any methods that can be applied to hard black box models for which relatively few 
samples will be available. 

Various sampling-based schemes have been proposed that might be used to extend 
the new methods of sensitivity analysis based on Dempster-Shafer evidence theory and 
probability bounds analysis described in this report to black boxes.  For example, Helton 
et al. (2004a,b) suggested decomposing the problem into a Cartesian product (à la Yager 
1986) and solving the resulting matrix of interval problems by using black box sampling 
to estimate the ranges of these intervals with the observed ranges of the sample outputs.  
The approach is designed for problems involving Dempster-Shafer inputs, but it can be 
immediately applied to problems with p-boxes using the basic conversions described in 
Ferson et al. (2003).  In principle, various ancillary strategies might be used to accelerate 
the convergence of this approach, such as methods that take account of overlap among 
the input intervals or the likely association of extreme values of the output variables with 
extreme values of the input variables, or employ strategic simplifications to reduce the 
dimensionality of the problem (Helton et al. 2006c).  The approach was illustrated for a 
problem involving an algebraic expression in Helton et al. (2004b), and for a much more 
complex problem involving competing failure risks of strong and weak switches in 
Helton et al. (2004a). 

Bruns et al. (2006a) described an alternative direct sampling approach called 
“optimized parameter sampling”.  This approach can be applied in situations where the 
inputs are “parameterized” p-boxes, which are essentially collections of distributions of a 
given shape (such as normal) specified by one or two parameters from within given 
intervals.  In an outer sampling loop, distributions are selected from all the k input p-
boxes by randomly picking the scalar parameter values from their respective intervals.  
For each collection of k (precise) probability distributions, sampling-based techniques are 
employed in an inner loop to solve the twin optimization problems of finding the upper 
and lower bounds on the expectation or any percentile of the result.  Bruns et al. (2006a) 
illustrated the sampling strategy and evaluated its efficiency on a problem estimating the  
first passage time for a thermocouple temperature. 

Bruns et al. (2006b) also described yet another direct sampling approach called p-box 
convolution sampling, although it can be applied immediately to Dempster-Shafer 
structures too.  It involves taking random samples from each of the k inputs.  A random 
sample from an uncertain number is the interval corresponding to the (r 100)th percentile 
where r is a random number uniformly distributed on the unit interval [0,1].  This 
generalizes the selection of a random value from a precise probability distribution 
(Ferson and Ginzburg 1995; Cooper et al. 1996).  These k intervals are then projected 
through the black box model using sampling-based optimization techniques to find the 
largest and smallest output values given the input intervals, or the Cauchy-deviate 
sampling strategy described by Trejo and Kreinovich and (2001). 

It does not seem possible to account for uncertainty about dependence among the 
inputs by generalizing the approach of Helton et al. (2004a,b) or either the optimized 
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parameter sampling* or p-box convolution sampling approaches of Bruns et al. (2006a,b).  
Even if it is possible to relax this ristriction, all of these direct sampling approaches will 
remain computationally intensive and would likely produce reliable results only when 
fairly many sample evaluations of the black box can be made.  Despite their limitations 
and computational costs, these sampling approaches could make the new methods 
workable for a variety of problems in engineering. 

These direct sampling methods permit the application of DST and PBA for sensitivity 
analysis in the context of epistemic uncertainty, including the use of the methods as 
sensitivity or robustness analyses of first-order probabilistic assessments as described in 
section  2, and the various kinds of pinching analyses described in section 4.  The 
calculation of local sensitivity coefficients characterized by uncertain numbers (as 
described in section 3) for black box models based on a pure sampling approach would 
be possible if the approach of Uryasev (1994; 1995; 1997)—which computes local 
sensitivities of probabilities directly from Monte Carlo simulations without additional 
simulation runs—could somehow be generalized to handle epistemic uncertainty.  If the 
details inside the black box are available in software source code (i.e., if the model is 
really a “crystal box” that can be scrutized but not changed), then the calculation of local 
sensitivity coefficients might also be accomplished with the use of automatic 
differentiation (http://www.mcs.anl.gov/Projects/autodiff; Griewank 1989; Fischer 1993; 
Korivi et al. 1994; Berz et al. 1996; Griewank 2000). 

Aside from the direct sampling approaches described above, the general strategy of 
response surface modeling (Myers 1971; Morton 1983; Downing et al. 1985; Kleijnen 
1992; Myers 1999; Myers et al. 2004) allows an indirect application of Dempster-Shafer 
theory and probability bounds analysis to black boxes that might often be useful and 
effective.  Response surface modeling is widely employed in engineering to replace a 
black box that is too hard to study directly with a statistical model of the black box that is 
more amenable to detailed analysis.  In principle, the response surface models can have 
any form, but usually a linear or low-order polynomial model is employed, which is often 
characterized as a “model of the model” in that it is a nakedly phenomenological model 
of a much richer, physics-based model.  

Many analysts (e.g., Frey and Patil 2002) suggest that it will often be advantageous to 
limit the number of inputs that are included in the response surface model to those that 
are identified as the most important using some screening sensitivity analysis.  Apart 
from the chicken-and-egg problem of having to decide what is important to a sensitivity 
analysis before one conducts a sensitivity analysis, there is a more fundamental objection 

                                                 
*Bruns et al. (2006a) suggested that the optimized parameter sampling approach does not generalize to 
account for uncertainty about distribution family or to general Dempster-Shafer structures.  However, this 
generality might be possible by devising a scheme for “sampling” discrete probability distributions from a 
non-parametric uncertain number.  The theory of Chebyshev systems (Karlin and Studden 1966) suggests 
that the bounds on uncertain numbers are set by degenerate discrete probability distributions having mass 
only on a minimal number of points.  It should be possible to generate example distributions that are 
consistent with given p-boxes or Dempster-Shafer structures. 
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to this suggestion:  several individually unimportant variables may, in aggregate, be 
important.  Although it may be reasonable to drop small-impact terms when trying to 
make an approximation, this is not a good idea when trying to bound uncertainty.  In the 
context of epistemic uncertainty, it may be far more reasonable to simplify the problem in 
other ways, such as replacing a complex Dempster-Shafer or p-box representation of an 
input variable with its interval support.  Such replacements cannot lead to underestimates 
of uncertainty, even if there are many of them.  This strategy would therefore be 
preferable in many situations to simply omitting variables.  On the other hand, the 
strategy cannot by itself overcome the problem of having very few samples.  

Another important consideration also argues against omitting any of the inputs before 
computing the regression.  In a reduced regression analysis, the regression coefficients 
cannot be directly interpreted as sensitivities associated with the terms of the regression.  
This is because regression coefficients can change, sometimes dramatically or even in 
sign, when the regression model is altered.  When developing a response surface model, 
at least analysts know the correct inputs to use for their black-box model.  (In this way 
they are better off than regression analysts in general who do not have such information.)  
Omitting some of the inputs to simplify the response surface is problematic because it 
creates the same disadvantage of varying regression coefficients for the response surface 
modeler. 

The selection of the inputs to be used in sampling is an important consideration in 
response surface modeling, and this problem is treated in the broad statistical literature on 
sampling and experimental design.  Typically, the inputs can be chosen by the analyst, 
although the design of inputs for sampling may occasionally not be under the analyst’s 
control.  This can happen when, for example, samples were obtained for other purposes 
(such as calibration) and additional sampling would be costly.  When an analyst can 
specify the inputs for the samples, randomness of sample design is often a good strategy 
in many situations and usually simplifies statistical inferences, but various stratified 
sampling strategies such as Latin hypercube sampling or importance sampling may more 
commonly be preferable (Helton and Davis 2000a; 2002; 2003). 

Perhaps even more critical than where the points will be is the issue of how many 
points there will be.  If there are n input dimensions, one needs a minimum of n+1 sample 
points in general position to specify a linear model.  Many more points would be 
necessary to specify a full quadratic or higher-order model.  If there are more input 
dimensions than there are sample points, then the regression is underdetermined and 
cannot be performed by objective statistical methods.  There are infinitely many planes 
that pass through two points.  It may still be possible, nevertheless, to use response 
surfaces even in these extreme cases if the analyst can interject mechanistic knowledge of 
the physics of the underlying process to specify the model. 

The difference between the original sample output and the output that would be 
predicted from the response surface model applied to the corresponding sample input is 
called the residual.  The statistical fit of a response surface model and the normality of 
residuals can be studied using various standard well-known techniques such as the 
Kolmogorov-Smirnov, Anderson-Darling or chi-squared tests.  For many hard black 
boxes, however, the goodness of fit of the response surface model is rarely an issue 
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because the number of available sample points is so few relative to the dimensionality of 
the model.  If a response surface can be selected to pass through all the available points, 
the residuals are zero.   

In applications where there are non-zero residuals, the uncertainty that they embody 
should not be neglected in the subsequent analysis.  A response surface model fitted by 
least-squares regression, for example, will have a form like 

 

y = β1x1 + β2x2 + … + βkxk + ε 
 

where the response variable y is explained as a sum of inputs xi multiplied respectively by 
associated regression coefficients βi, and an error term ε which is represented by a normal 
distribution having mean zero and standard deviation σ (which is essentially the standard 
deviation of the residuals).  Typically, ε is assumed to be independent of the other terms 
in the regression model.  This error term should be incorporated into any subsequent 
sensitivity or uncertainty analyses based on this response surface model.  Failure to do so 
could clearly understate the true uncertainty. 

Once a black box model is represented by a response surface model, the methods of 
uncertainty and sensitivity analysis outlined in the previous sections of this report can be 
directly applied, including ordinary Dempster-Shafer theory and probability bounds 
analysis and pinching analyses of various kinds.  The computational difficulty associated 
with these applications may be fairly low if the response surface is a first-order linear 
model.  If it includes repeated variables such as squares or higher powers or cross 
products representing interactions in addition to linear terms, then more careful strategies 
that account for the repeated variables will be needed to obtain best possible results.  
Strategies that may be useful in such cases are reviewed by Kreinovich et al. (2006). 

There is a loss of guaranteed rigor in the use of a response surface model rather than 
the original model.  This means that, even if the uncertainty of the input variables is 
surely captured by their uncertain number representations (Dempster-Shafer structures or 
p-boxes) and original model is an exact representation of the underlying process, the 
fitting of a response surface model is a statistical exercise and it may be imperfect.  
Indeed, it would be expected to be imperfect when there are few sample points available 
to inform the regression.  We know of no method that would allow an analyst to 
rigorously propagate uncertainty through a black box model without assumptions that 
make the results contingent on the presumption that the response surface model is correct.  
The absence of the guarantee means that the uncertainty and sensitivity analyses of hard 
black box models will be approximate.  Nevertheless, these approximations can often be 
good enough for use throughout engineering. 

8 Conclusions and future directions 
Although sensitivity analysis is universally recognized as crucial in planning 

strategies to manage risks of adverse events, as well as in designing further empirical 
study to improve risk estimates, comprehensive sensitivity analyses are not always 

 54 



undertaken for probabilistic calculations because of the computational burden they entail.  
Many probabilistic assessments employ what-if sensitivity studies to explore the possible 
impact on the assessment results of varying the inputs.  However, such studies are often 
difficult to conduct because of the large number of calculations that are required and 
because the universe of alternative models is ill-defined or difficult to sample.  Although 
this approach can be informative, it is rarely comprehensive because, when there are 
multiple uncertainties at issue (as there usually are), the shear factorial problem of 
computing all of the possible combinations becomes prohibitive.  Usually only a 
relatively tiny number of such analyses can be performed in practice.  Yet when 
uncertainties are large and precise estimates of probabilities are impossible to obtain, 
characterizations of sensitivities become even more important to the decision making 
process.  In many risk and safety assessments, DST and PBA can be used to automate 
such what-if sensitivity studies and vastly increase their comprehensiveness. 

Sensitivity analysis can also be conducted within DST and PBA by hypothetically 
replacing an uncertain number (Dempster-Shafer structure or p-box) with a precise 
distribution, a zero-variance interval, or perhaps a scalar number to evaluate the potential 
reduction of uncertainty of the result under additional knowledge.  These different kinds 
of pinchings enable analysts to clearly distinguish the various purposes of sensitivity 
analyses.  Pinching away epistemic uncertainty is useful in planning future empirical 
effort.  Pinching away aleatory uncertainty is useful in planning engineering interventions 
to control system outcomes.  The dike revetment case study exemplified these different 
kinds of pinchings and produced results pointing to different variables as sensitive in 
different senses. 

DST and PBA permit a comprehensive uncertainty analysis, and this fact obviates 
some of the complexity that attends traditional approaches to sensitivity analysis based on 
similar pinching ideas.  For instance, when a variable is pinched to a point value in a 
Monte Carlo sensitivity study, the analyst usually wants to pinch to many possible values 
(according to their respective probabilities) and find the average effect of the pinching.  
This is called “freezing” the variable.  The analog of freezing in PBA or DST would be to 
replace an uncertain number with many possible precise distributions and find the 
envelope of the results yielded under the various pinchings.  But the original analysis 
already produced this envelope in the calculation for the baseline case.  Whichever 
precise distribution the uncertain number is pinched to, the result of the pinched 
calculation is sure to lie within the original baseline case.  This is true even if multiple 
variables are pinched simultaneously.  Thus, sensitivity studies conducted on top of PBA 
or DST may not need to be as complicated as they are for traditional Monte Carlo 
simulations.   

It might, nevertheless, be possible to conduct a sensitivity analysis within DST or 
PBA using averaging rather than enveloping, although doing so requires developing a 
generalization of the notion of ‘average’ that is meaningful in settings involving 
imprecise probabilities.  In this case, the average of a class of distributions would be a set 
of values rather than a single scalar quantity.  Hall (2006) explores this approach and 
shows that variance-based or entropy-based sensitivity indices can be extended to the 
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context of imprecise probabilities.  He gives numerical examples of how they might be 
computed when the possible probability distributions are defined by interval parameters. 

Much of the current literature on sensitivity analysis for probabilistic settings is 
devoted to the idea of variance decomposition.  Variance is sometimes a reasonable 
measure of overall uncertainty for probability distributions, although it is hardly the only 
possible such measure.  In the context of uncertain numbers, variance by itself seems to 
be a decidedly impoverished measure of overall uncertainty.  To represent aleatory and 
epistemic uncertainty simultaneously, it may be necessary to introduce a bivariate 
measure that characterizes the epistemic and aleatory components separately.  In this 
report, we have found the breadth (area between the upper and lower bounds of a p-box) 
and the interval estimate of variance to be an informative pair for describing uncertain 
numbers. 

Sampling strategies may be useful in extending PBA and DST to black box models 
which can only be studied by sampling, but they are likely to require large numbers of 
samples to yield reliable results.  Response surface models are likewise non-rigorous, 
especially when the sample sizes used to develop them are limited, but they may also be 
commonly useful in engineering practice.  In constructing response surface models, it is 
important not to artificially restrict the number of inputs used in the regression analysis to 
ensure that uncertainty in all input variables can be propagated.  It is also important to 
propagate the uncertainty associated with the residual or error term from the regression 
analysis through any subsequent uncertainty analyses. 

A plethora of methods for sensitivity analysis have been proposed for probabilistic 
analyses.  It is not entirely reasonable to compare these methods against each other as if 
they were exchangeable.  They are appropriate for different kinds of problems, and they 
were designed to be convenient for different methodological approaches.  Most 
importantly, they answer different questions.  For example, the sampling-based methods 
of sensitivity analysis described by Helton et al. (2006b) are especially useful for tracking 
analyses that match which particular inputs correspond to outcomes of special interest.  
They are useful for answering questions such as what combination of extreme load and 
weather conditions will result in the collapse of a structure.  The new methods of DST 
and PBA do not seem to be well suited for this purpose.  On the other hand, the tracking 
analyses are not well suited to answering other important questions such as “how robust 
are the results of the assessment?” or “what variables should be studied to most quickly 
reduce the overall uncertainty?” for which DST and PBA are especially well suited.  The 
fact that very different kinds of analyses for different purposes have been lumped 
together under the name “sensitivity analysis” has certainly led to some confusion.  It 
would be useful to tease apart the various purposes, e.g., assessing robustness, planning 
empirical effort, planning engineering intervention, tracking causation, etc., in a 
comparison of methods. 

8.1 Future directions 
We recognize the following possible directions where future work would be useful. 

1. Further research is needed to develop and assess practical computational 
strategies for DST and PBA for effective use with black box models.  Especially 
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valuable would be methods that can yield reasonably conservative results even 
when very few evaluations of the model are possible.   

2. Optimized parameter sampling which can project the uncertainty in parameterized 
p-boxes through black box models should be generalized to handle non-
parametric p-boxes and Dempster-Shafer structures.  This might be possible by 
appeal to the theory of Chebyshev systems (Karlin and Studden 1966). 

3. Research is needed on the functions that might be possible and useful for 
measuring the overall uncertainty of uncertain numbers.  The report’s focus on the 
breadth (area between the bounds of the p-box) belies the fact that many other 
measures are possible, and some might be substantially better for particular 
purposes.   

4. Computational methods are needed that can produce assured enclosures (rigorous 
bounds) for the reductions of uncertainty that are computed by pinching.  The 
simulation methods used in this report are fast and probably often good 
approximations, but they lack the guarantee that accompanies most other 
calculations in DST and PBA. 

5. It would be useful to establish that it is not only possible to use the new methods 
to compute sensitivities but also that it is indeed a good idea to do so.  Further 
research is needed to compare the new methods with other available methods that 
might be used in the context of epistemic uncertainty.  Criteria for a successful 
method of sensitivity analysis were discussed by Swartzman and Kaluzny (1987). 

6. The method of Uryasev (1994; 1995; 1997), which can compute local sensitivities 
of probabilities directly from Monte Carlo simulations with negligible additional 
calculation and no additional simulation runs, should be extended to handle 
epistemic uncertainty in the form of intervals, p-boxes or Dempster-Shafer 
structures. 
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9 Glossary 
 

automatic differentiation  A computerized method for the numerical evaluation of the 
derivative of a function specified by a computer program at a specific point.  It is 
distinguished from symbolic differentiation in which a function is symbolically 
manipulated to derive the derivative function for all point values, and also from 
numerical differentiation which is an approximate method for evaluating a 
derivative at a point based on discretized finite differences.  Automatic 
differentiation is sometimes called algorithmic differentiation. 

aleatory uncertainty  The kind of uncertainty resulting from randomness or 
unpredictability due to stochasticity.  Aleatory uncertainty is also known as 
variability, stochastic uncertainty, Type I or Type A uncertainty, irreducible 
uncertainty, or objective uncertainty. 

almost surely  A property holds almost surely if it holds always except possibly for a set 
of measure zero. 

Bayesian sensitivity analysis  A method to estimate the robustness of answers from a 
Bayesian analysis to uncertainty about the details and inputs of the analysis (Berger 
1985; 1994).  An answer is robust if it does not depend sensitively on the 
assumptions and inputs on which it is based.  Bayesian sensitivity analysis is also 
called robust Bayes analysis. 

best possible  As tight as can be justified (said of bounds).  An upper bound is best 
possible if is the smallest such bound possible, and a lower bound is best possible if 
it is the largest lower bound possible. 

bound  An upper bound of a set of real numbers is a real number that is greater than or 
equal to every number in the set.  A lower bound is a number less than or equal to 
every number in the set.  In this report, we also consider bounds on functions.  
These are not bounds on the range of the function, but rather bounds on the function 
for every function input.  For instance, an upper bound on a function F(x) is another 
function B(x) such that B(x) ≥ F(x) for all values of x.  B(x) is a lower bound on the 
function if the inequality is reversed.  If an upper bound cannot be any smaller, or a 
lower bound cannot be any larger, it is called a best possible bound. 

CDF  Cumulative distribution function (see distribution function). 

convolution  The mathematical operation which finds the distribution of a sum of 
random variables from the distributions of its addends.  The term can be generalized 
to refer to differences, products, quotients, etc.  It can also be generalized to refer to 
intervals, p-boxes and Dempster-Shafer structures as well as distributions.  

core  The set of possible values of an uncertain number about which information 
expressed in the uncertain number is totally vacuous.  The core of a Dempster-
Shafer structure is the intersection of all its focal elements.  The core of a p-box is 
the region, if one exists, along the abscissa for which the upper bound of the p-box 
is one and lower bound is zero.  The core of an interval is the interval itself.  A 
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probability distribution does not have a core, except for the degenerate case of a 
Dirac delta distribution. 

correlation  The tendency of two paired variables to vary in the same direction.  
Correlation can be measured by several coefficients, conventionally constrained to 
the interval [−1, +1], such as Pearson correlation, Spearman correlation, Kendall 
correlation, among others.  If used without qualification, correlation usually refers 
to Pearson correlation. 

covariance  The first product moment of two variables about their means.  For random 
variable X and Y, their covariance is cov(X, Y) = E((X – E(X)) (Y – E(Y))) = E(XY) − 
E(X) E(Y). 

cumulative distribution function  A distribution function. 

Dempster-Shafer structure  A set of focal elements (in this report, closed intervals of 
the real line), each of which is associated with a non-negative real values that sum 
to unity. 

Dempster-Shafer theory  A variant of probability theory in which the elements of the 
probability space to which nonzero mass is attributed, called focal elements, are not 
singletons but rather sets which represent the indistinguishabilty of alternatives 
within bodies of evidence.  Dempster-Shafer theory is sometimes called evidence 
theory. 

dependence  The relationship between events or between random variables.  If one event 
(random variable) is unrelated to another event (random number), they are said to 
be independent.  Otherwise, they are said to be dependent.   

dependency bounds  Bounds on a sum or other arithmetic function that arise when no 
assumption is made about the inter-variable dependence between the addend 
distributions or input distributions of the function.   

Dirac delta distribution  A degenerate kind of probability distribution that corresponds 
to a constant scalar quantity.   

dispersive Monte Carlo simulation  A Monte Carlo simulation in which unknown 
correlations are set to their most extreme plausible values in order to obtain results 
that conservatively estimate variances and tail probabilities. 

distribution function  The function F associated with some variate that describes the 
probability F(X) that the variate will take on a value not greater than X.  The 
distribution function associated with a data set of scalar values describes the 
probability F(X) that a value selected at random (i.e., uniformly and independently) 
from the data values will have a value less than X.  Also known as a cumulative 
distribution function. 

DST  Dempster-Shafer theory. 

epistemic uncertainty  The kind of uncertainty arising from imperfect knowledge rather 
than variability.  Epistemic uncertainty is also known as incertitude, ignorance, 
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subjective uncertainty, Type II or Type B uncertainty, reducible uncertainty, and 
state-of-knowledge uncertainty. 

event  A subset of the sample space, which is the set of all possible outcomes of a 
random experiment.  If the outcome of the random experiment is a member of an 
event, then the event is said to have occurred.  In probability theory, an event is a 
collection of outcomes for which a probability has been assigned. 

focal element  A set (in this report, a closed interval of the real line) associated with a 
nonzero mass as a part of a Dempster-Shafer structure. 

Fréchet case  The strategy of making no assumption about dependence. 

Fréchet bounds  Bounds on a joint distribution H(x,y), specified by having marginal 
distributions F(x) and G(y), given by  

( ) ( )(),(min),(0,1)()(max yGxFyxHyGxF ≤≤−+ ) . 

These bounds are also known as the Fréchet-Hoeffding limits (Fréchet 1951; 
Hoeffding 1940).  They are the distributional analogs of the bounds in the Fréchet 
inequalities. 

Fréchet inequalities  Inequalities due to Fréchet (1935) on the probabilities of 
conjunctions and disjunctions of events Ai given by  

         max(0, a1 + a2+…+ an –(n−1)) ≤ P(A1& A2 & … & An) ≤ min(a1, a2,…, an), 

      max(a1, a2,…, an) ≤ P(A1∨ A2 ∨ … ∨ An) ≤ min(1, a1 + a2+…+ an), 

where ai = P(Ai). 

imprecise probabilities  The subject of any of several theories involving models of 
uncertainty that do not assume a unique underlying probability distribution, but 
instead correspond to a set of probability distributions (Couso et al. 2000).  The 
lower probability P(A) for event A is the maximum rate one would be willing to pay 
for a gamble that pays 1 unit of utility if A occurs and nothing otherwise.  The upper 
probability )(P A for event A is 1−P(not A), i.e., one minus the lower probability of 
A not occurring.  An imprecise probability arises when one’s lower probability for 
an event is strictly smaller than one’s upper probability for the same event (Walley 
1991).  Theories of imprecise probabilities are often expressed in terms of a lower 
probability measure giving the lower probability for every possible event from 
some universal set, or in terms of closed convex sets of probability distributions.  
Interval probabilities, Dempster-Shafer structures and probability boxes can be 
regarded as special-cases of imprecise probabilities. 

incertitude  The kind of uncertainty arising from imperfect knowledge.  Incertitude is 
also known as epistemic uncertainty, ignorance, subjective uncertainty, Type II or 
Type B uncertainty, reducible uncertainty, and state-of-knowledge uncertainty. 

infimum  The greatest lower bound of a set of values.  When the set consists of a finite 
collection of closed intervals, the infimum value is the same as the minimum value. 
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interval  The set of all real numbers lying between two fixed numbers called the 
endpoints of the interval.  In this report, intervals are always closed so that the 
endpoints are considered part of the set. 

inverse function  For a function y = F(x), an inverse function F−1 takes y-values in the 
range of the function F to x-values in the domain of F in such a way that F−1(F(x)) 
= x and F(F−1(y)) = y.  For instance, if F(x) is the distribution function for a random 
variable X giving the probability associated with the event X≤x, then the inverse 
function F−1(p) is the value of x associated with any value p.  An inverse function 
does not necessarily exist for any function, but any one-to-one function will have an 
inverse.  

mean  The probability-weighted average of a set of values or a probability distribution.  
The mean is also called the expected value or the expectation of a random variable.  
It is the first moment of a probability distribution. 

Monte Carlo simulation  A method of calculating functions of probability distributions 
by repeatedly sampling random values from those distributions and forming an 
empirical distribution function of the results. 

NP-hard  Lacking a general polynomial-time algorithm for a solution.  NP-hard 
problems grow exponentially in complexity with sample size or other feature.  Also 
called NP-complete. 

outward-directed rounding  Rounding an upper bound upward and a lower bound 
downward so as to maintain rigor of the bounds in reduced-precision expressions. 

p-box  A probability box. 

PBA  Probability bounds analysis. 

probability bounds analysis  An analysis or calculation involving interval probabilities 
or probability boxes. 

probability box  A class of distribution functions F(x) specified by a bounding pair of 
distribution functions F(x) and )(xF  such that )()()( xFxFxF ≤≤  for all x values. 

quantile  A number that divides the range of  a set of data or a distribution such that a 
specified fraction of the data or distribution lies below this number. 

random variable  A variable quantity whose values are distributed according to a 
probability distribution.  If the potential values of the random variable are a finite or 
countable set, the random variable is said to be discrete.  For a discrete random 
variable, each potential value has an associated probability between zero and one, 
and the sum of all of these probabilities is one.  If the random variable can take on 
any value in some interval of the real line (or any rational value within some 
interval), it is called a continuous random variable. 

real number  A real number is an element from the real line consisting of positive and 
negative integers, rational numbers, irrationals and transcendental numbers.  A real 
number is a rational number or the limit of a sequence of rational numbers.  Real 
numbers are sometimes called scalars. 
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repeated variables problem  The computational difficulty of evaluating accurate or best 
possible results from a mathematical expression involving multiple instances of 
uncertain variables or parameters that arises because the dependence between the 
repetitions is not taken into account in the evaluation.  For example, given an 
interval A=[a1,a2], the evaluation of the A − A = [a1 − a2, a2 − a1], is an interval that 
only straddles zero, rather than being identically zero as one might expect.  The 
same problem can also arise in Monte Carlo simulations whenever the perfect 
correlation between multiple instances of a variable within an expression is not 
recognized, as can occur when the evaluation of the expression is undertaken 
piecewise rather than all at once, but, in the case of Monte Carlo simulations, the 
uncertainty is usually underestimated.  Various techniques and strategies are 
available to overcome the repeated variable problem. 

rigorous  Exact or sure, as opposed to merely approximate.  Usually said of bounds 
which can be rigorous without being best possible. 

robust Bayes analysis  Bayesian sensitivity analysis. 

sensitivity analysis  A method that assesses the sensitivity of a model’s output to 
changes in one or more of its input parameters.  If small changes in an input 
parameter result in relative large changes in a model’s output, the model is said to 
be sensitive to the parameter. 

support  The subset of the domain of a distribution function over which the function is 
neither perfectly zero nor perfectly one. 

supremum  The least upper bound of a set of values.  When the set consists of a finite 
collection of closed intervals, the supremum value is the same as the maximum 
value. 

total probability  The probability of a single event. 

two-dimensional Monte Carlo  A kind of nested Monte Carlo simulation in which 
distributions representing both epistemic uncertainty and aleatory uncertainty are 
combined together.  Typically, the outer loop selects random values for the 
parameters specifying the distributions used in an inner loop to represent aleatory 
uncertainty.  This approach is also called second-order Monte Carlo simulation. 

uncertain number  A numerical quantity or distribution about which there is 
uncertainty.  Uncertain numbers include intervals, probability distributions, 
probability boxes, Dempster-Shafer structures as special cases.  Uncertain numbers 
also include scalars (real numbers) as degenerate special cases. 

uncertainty  The absence of perfectly detailed knowledge.  Uncertainty includes 
epistemic uncertainty (the exact value is not known) and aleatory uncertainty (the 
value is changing).  Uncertainty may also include other forms such as vagueness, 
ambiguity and fuzziness (in the sense of border-line cases). 

uncertainty analysis  A variety of calculations or techniques for quantitative or 
qualitative assessments explicitly involving uncertainty, often including listing of 
the sources of uncertainty impinging on a problem or quantity (uncertainty 
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budgets), characterization of the uncertainty about a numerical quantity, 
propagation of uncertainty (uncertainty quantification) through a model, or 
assessment of the relative importance of the uncertainties of various inputs of a 
model in terms of their contributions to its output’s uncertainty. 

uncertainty quantification  Calculation of the overall uncertainty in a model’s output 
due to the uncertainties in its various inputs.  Also called uncertainty propagation. 

variability  The fluctuation or variation due to randomness or stochasticity.  Variability 
is also called aleatory uncertainty, stochastic uncertainty, Type 1 or Type A 
uncertainty, irreducible uncertainty and objective uncertainty. 

variance  A measure of the variability in the values of a random variable defined as the 
mean of the squared difference between the random variable and its mean value. 

variance-based sensitivity analysis  An approach to sensitivity analysis for probabilistic 
computations that uses variance as a measure of the overall uncertainty of a 
probability distribution. 
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